首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptor type 2 (RYR2) is the key determinant of cardiac contractility. Although activity of RYR2 channels is primary controlled by Ca2+ entry through the plasma membrane, there is growing evidence that Ca2+ in the lumen of the SR can also be effectively involved in the regulation of RYR2 channel function. In the present study, we investigated the effect of luminal Ca2+ on the response of RYR2 channels reconstituted into a planar lipid membrane to caffeine and Ca2+ added to the cytosolic side of the channel. We performed two sets of experiments when the channel was exposed to either luminal Ba2+ or Ca2+. The given ion served also as a charge carrier. Luminal Ca2+ effectively shifted the EC50 for caffeine sensitivity to a lower concentration but did not modify the response of RYR2 channels to cytosolic Ca2+. Importantly, luminal Ca2+ exerted an effect on channel gating kinetics. Both the open and closed dwell times were considerably prolonged over the whole range (response to caffeine) or the partial range (response to cytosolic Ca2+) of open probability. Our results provide strong evidence that an alteration of the gating kinetics is the result of the interaction of luminal Ca2+ with the luminally located Ca2+ regulatory sites on the RYR2 channel complex.  相似文献   

2.
Ca2+-dependent inhibition of native and isolated ryanodine receptor (RyR) calcium release channels from sheep heart and rabbit skeletal muscle was investigated using the lipid bilayer technique. We found that cytoplasmic Ca2+ inhibited cardiac RyRs with an average K m = 15 mm, skeletal RyRs with K m = 0.7 mm and with Hill coefficients of 2 in both isoforms. This is consistent with measurements of Ca2+ release from the sarcoplasmic reticulum (SR) in skinned fibers and with [3H]-ryanodine binding to SR vesicles, but is contrary to previous bilayer studies which were unable to demonstrate Ca2+-inhibition in cardiac RyRs (Chu, Fill, Stefani &; Entman (1993) J. Membrane Biol. 135, 49–59). Ryanodine prevented Ca2+ from inhibiting either cardiac or skeletal RyRs. Ca2+-inhibition in cardiac RyRs appeared to be the most fragile characteristic of channel function, being irreversibly disrupted by 500 mm Cs+, but not by 500 mm K+, in the cis bath or by solublization with the detergent CHAPS. These treatments had no effect on channel regulation by AMP-PNP, caffeine, ryanodine, ruthenium red, or Ca2+-activation. Ca2+-inhibition in skeletal RyRs was retained in the presence of 500 mm Cs+. Our results provide an explanation for previous findings in which cardiac RyRs in bilayers with 250 mm Cs+ in the solutions fail to demonstrate Ca2+-inhibition, while Ca2+-inhibition of Ca2+ release is observed in vesicle studies where K+ is the major cation. A comparison of open and closed probability distributions from individual RyRs suggested that the same gating mechanism mediates Ca2+-inhibition in skeletal RyRs and cardiac RyRs, with different Ca2+ affinities for inhibition. We conclude that differences in the Ca2+-inhibition in cardiac and skeletal channels depends on their Ca2+ binding properties.  相似文献   

3.
The broad range of ligands known to modulate ryanodine receptor activity includes a class of heteroaromatic compounds displaying relatively poor efficacy. Greater understanding of the physicochemical properties that predispose these molecules to interaction with the channel should facilitate the rational design of more potent analogues. To this end we are examining the structure-activity relationship for simple heteroaromatic compounds. Efficacy is assessed by the ability to stimulate [3H]ryanodine binding to heavy sarcoplasmic reticulum vesicles. The propensity to activate the channel requires notably little chemical functionality and is associated with the capacity for charge-transfer complex formation in conjunction with steric bulk.  相似文献   

4.
To investigate the cellular mechanisms for altered cardiac function in senescence, we measured Ca(2+) transients and Ca(2+) sparks in ventricular cardiomyocytes from 6- to 24-month-old Fisher 344 (F344) rat hearts. The single channel properties of ryanodine receptors from adult and senescent hearts were also studied. In senescent myocytes, we observed a decreased peak [Ca(2+)](i) amplitude and an increased time constant for decay (tau), both of which correlated with a reduced Ca(2+) content of the sarcoplasmic reticulum (SR). Our studies also revealed that senescent cardiomyocytes had an increased frequency of Ca(2+) sparks and a slight but statistically significant decrease in average amplitude, full-width-at-half-maximum (FWHM) and full-duration-at-half-maximum (FDHM). Single channel recordings of ryanodine receptors (RyR2) demonstrated that in aging hearts, the open probability (P(o)) of RyR2 was increased but the mean open time was shorter, providing a molecular correlate for the increased frequency of Ca(2+) sparks and decreased size of sparks, respectively. Thus, modifications of normal RyR2 gating properties may play a role in the altered Ca(2+) homeostasis observed in senescent myocytes.  相似文献   

5.
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.  相似文献   

6.
We investigated the effects of changes in luminal [Ca2+] on the gating of native andpurified sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release channels reconstituted intoplanar phospholipid bilayers. The open probability (P o )of channels activated solely by cytosolic Ca2+ was greater at positive than negative holding potentials. Channels activatedsolely by 10 m cytosolic Ca2+ exhibited no change in steady-stateP o or in the relationship betweenP o and voltage when the luminal[Ca2+] was increased from nanomolar to millimolar concentrations. In the absence of activating concentrationsof cytosolic Ca2+, the channel can be activated by the phosphodiesterase inhibitor sulmazole (AR-L 115BS). However, cytosolicCa2+-independent activation of the channel by sulmazole requires luminal Ca2+. In the presence ofsulmazole, at picomolar luminal [Ca2+] the channel remains completely closed. Increasing the luminal [Ca2+]to millimolar levels markedly increases the P o via an increase in theduration of open events. The P o and duration of the sulmazole-activated, luminalCa2+-dependent channel openings are voltage dependent. In the presence of micromolar luminal Ca2+, theP o and duration of sulmazole-activated openings are greater atnegative voltages. However, at millimolar luminal [Ca2+], long openings are also observed at positive voltages and theP o appears to be similar at positive and negative voltages. Our findings indicate thatthe regulation of channel gating by luminal Ca2+ depends on the mechanism of channel activation.We would like to thank Dr Allan Lindsay for the preparation of the purified SR Ca2+-release channels. This work was supported by the British Heart Foundation.  相似文献   

7.
Ca2+ channels that underlie mitochondrial Ca2+ transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca2+ uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca2+ transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca2+ overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca2+ channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca2+ channels.  相似文献   

8.
The effects of changes in luminal [Ca2+] have been investigated in sheep skeletal sarcoplasmic reticulum (SR) Ca2+-release channels after activation of the channels by different ligands from the cytosolic side of the channel. Native heavy SR membrane vesicles were incorporated into planar phospholipid bilayers under voltage-clamp conditions. Experiments were carried out in symmetrical 250 mm Cs+. Lifetime analysis indicates that channels activated solely by cytosolic Ca2+ exhibit at least two open and five closed states. The open events are very brief and are close to the minimum resolvable duration. When channels are activated solely by cytosolic Ca2+, luminal Ca2+ does not appear to exert any regulatory effect. The P 0 and duration of the open and closed lifetimes are unchanged. However, if channels are activated by ATP alone or by ATP plus cytosolic Ca2+, increases in luminal [Ca2+] produce marked increases in P 0 and in the duration of the open lifetimes. Our results demonstrate that maximum activation of the skeletal SR Ca2+-release channel by ATP cannot be obtained in the absence of millimolar luminal [Ca2+].We are grateful to the British Heart Foundation for financial support.  相似文献   

9.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   

10.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

11.
The contraction of adult mammalian ventricular cardiomyocytes is triggered by the influx of Ca2+ ions through sarcolemmal L-type Ca2+ channels (LCCs). However, the gating properties of unitary LCCs under physiologic conditions have remained elusive. Towards this end, we investigated the voltage-dependence of the gating kinetics of unitary LCCs, with a physiologic concentration of Ca2+ ions permeating the channel. Unitary LCC currents were recorded with 2 mM external Ca2+ ions (in the absence of LCC agonists), using cell-attached patches on K-depolarized adult rat ventricular myocytes. The voltage-dependence of the peak probability of channel opening (Po vs. Vm) displayed a maximum value of 0.3, a midpoint of −12 mV, and a slope factor of 8.5. The maximum value for Po of the unitary LCC was significantly higher than previously assumed, under physiologic conditions. We also found that the mean open dwell time of the unitary LCC increased twofold with depolarization, ranging from 0.53 ± 0.02 ms at −30 mV to 1.08 ± 0.03 ms at 0 mV. The increase in mean LCC open time with depolarization counterbalanced the decrease in the single LCC current amplitude; the latter due to the decrease in driving force for Ca2+ ion entry. Thus, the average amount of Ca2+ ions entering through an individual LCC opening (∼300-400 ions) remained relatively constant over this range of potentials. These novel results establish the voltage-dependence of unitary LCC gating kinetics using a physiologic Ca2+ ion concentration. Moreover, they provide insight into local Ca2+-induced Ca2+ release and a more accurate basis for mathematical modeling of excitation-contraction coupling in cardiac myocytes.  相似文献   

12.
Part of the chloroplast photoprotection response to excess light absorption involves formation of zeaxanthin (and antheraxanthin) via the violaxanthin deepoxidase enzyme, the activity of which requires lumen acidity near or below pH 6.0. Clearly, the violaxanthin de-epoxidase activity is strongly regulated because at equivalent energization levels (including the parameters of H+ accumulation and ATP formation rates), there can be either low or high violaxanthin de-epoxidase enzyme activity. This work shows that the factor or factors responsible for regulating the violaxanthin deepoxidase correlate directly with those which regulate the expression of membrane-localized or delocalized proton gradient (Δ~μH+) energy coupling. The most clearly identified factor regulating switching between localized and delocalized energy coupling modes is Ca2+ binding to the lumen side of the thylakoid membrane; in particular, Ca2+ binding to the 8 kDA subunit III of the CFo H+ channel. The activity of violaxanthin deepoxidase in pea (Pisum sativa) and spinach (Spinacea oleracea) thylakoids is shown here to be strongly correlated with conditions known from previous work to displace Ca2+ from the CFo H+ channel and thus to modulate the extent of lumenal acidification while maintaining a fairly constant rate of ATP formation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The association of an endogenous, Ca2+-dependent cysteine-protease with the junctional sarcoplasmic reticulum (SR) is demonstrated. The activity of this protease is strongly stimulated by dithiothreitol (DTT), cysteine and β-mercaptoethanol, and is inhibited by iodoacetamide, mercuric chloride and leupeptin, but not by PMSF. The activity of this thiol-protease is dependent on Ca2+ with half-maximal activity obtained at 0.1 μm and maximal activity at 10 μm. Mg2+ is also an activator of this enzyme (CI50=22 μm). These observations, together with the neutral pH optima and inhibition by the calpain I inhibitor, suggest that this enzyme is of calpain I type. This protease specifically cleaves the ryanodine receptor monomer (510 kD) at one site to produce two fragments with apparent molecular masses of 375 and 150 kD. The proteolytic fragments remain associated as shown by purification of the cleaved ryanodine receptor. The calpain binding site is identified as a PEST (proline, glutamic acid, serine, threonine-rich) region in the amino acid sequence GTPGGTPQPGVE, at positions 1356–1367 of the RyR and the cleavage site, the calmodulin binding site, at residues 1383–1400. The RyR cleavage by the Ca2+-dependent thiol-protease is prevented in the presence of ATP (1–5 mm) and by high NaCl concentrations. This cleavage of the RyR has no effect on ryanodine binding activity but stimulates Ca2+ efflux. A possible involvement of this specific cleavage of the RyR/Ca2+ release channel in the control of calpain activity is discussed.  相似文献   

14.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

15.

Aims

We have previously demonstrated that propyl gallate has a Ca2 + sensitizing effect on the force generation in membrane-permeabilized (skinned) cardiac muscle fibers. However, in vivo beneficial effects of propyl gallate as a novel Ca2 + sensitizer remain uncertain. In the present study, we aim to explore in vivo effects of propyl gallate.

Main methods

We compared effects of propyl gallate on ex vivo intact cardiac muscle fibers and in vivo hearts in healthy mice with those of pimobendan, a clinically used Ca2 + sensitizer. The therapeutic effect of propyl gallate was investigated using a mouse model of dilated cardiomyopathy (DCM) with reduced myofilament Ca2 + sensitivity due to a deletion mutation ΔK210 in cardiac troponin T.

Key findings

Propyl gallate, as well as pimobendan, showed a positive inotropic effect. Propyl gallate slightly increased the blood pressure without changing the heart rate in healthy mice, whereas pimobendan decreased the blood pressure probably through vasodilation via inhibition of phosphodiesterase and increased the heart rate. Propyl gallate prevented cardiac remodeling and systolic dysfunction and significantly improved the life-expectancy of knock-in mouse model of DCM with reduced myofilament Ca2 + sensitivity due to a mutation in cardiac troponin T. On the other hand, gallate, a similarly strong antioxidant polyphenol lacking Ca2 + sensitizing action, had no beneficial effects on the DCM mice.

Significance

These results suggest that propyl gallate might be useful for the treatment of inherited DCM caused by a reduction in the myofilament Ca2 + sensitivity.  相似文献   

16.
Sarcoplasmic reticulum contains the internal Ca2+ store in smooth muscle cells and its lumen appears to be a continuum that lacks diffusion barriers. Accordingly, the free luminal Ca2+ level is the same all throughout the SR; however, whether the Ca2+ buffer capacity is the same in all the SR is unknown. We have estimated indirectly the luminal Ca2+ buffer capacity of the SR by comparing the reduction in SR Ca2+ levels with the corresponding increase in [Ca2+]i during activation of either IP3Rs with carbachol or RyRs with caffeine, in smooth muscle cells from guinea pig urinary bladder. We have determined that carbachol-sensitive SR has a 2.4 times larger Ca2+ buffer capacity than caffeine-sensitive SR. Rapid inhibition of SERCA pumps with thapsigargin revealed that this pump activity accounts for 80% and 60% of the Ca2+ buffer capacities of carbachol- and caffeine-sensitive SR, respectively. Moreover, the Ca2+ buffer capacity of carbachol-sensitive SR was similar to caffeine-sensitive SR when SERCA pumps were inhibited. Similar rates of Ca2+ replenishments suggest similar levels of SERCA pump activities for either carbachol- or caffeine-sensitive SR. Paired pulses of caffeine, in conditions of low Ca2+ influx, indicate the relevance of luminal SR Ca2+ buffer capacity in the [Ca2+]i response. To further study the importance of luminal SR Ca2+ buffer capacity in the release process we used low levels of heparin to partially inhibit IP3Rs. This condition revealed carbachol-induced transient increase of luminal SR Ca2+ levels provided that SERCA pumps were active. It thus appears that SERCA pump activity keeps the luminal SR Ca2+-binding proteins in the high-capacity, low-affinity conformation, particularly for IP3R-mediated Ca2+ release.  相似文献   

17.
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart.  相似文献   

18.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

19.
20.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号