首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Protein membrane transduction domains are able to translocate through cell membranes. This capacity resulted in new concepts on cell communication and in the design of vectors for internalization of active molecules into cells. Penetratin crosses the plasma membrane by a receptor and metabolic energy-independent mechanism which is at present unknown. A better knowledge of its interaction with phospholipids will help to understand the molecular mechanisms of cell penetration. Here, we investigated the role of lipid composition on penetratin induced membrane perturbations by X-ray diffraction, microscopy and 31P-NMR. Penetratin showed the ability to induce phospholipid domain separation, membrane bilayer thickening, formation of vesicles, membrane undulations and tubular pearling. These data demonstrate its capacity to increase membrane curvature and suggest that dynamic phospholipid–penetratin complexes can be organized in different structural arrangements. These properties and their implications in peptide membrane translocation capacity are discussed.  相似文献   

5.
Several homeodomains and homeodomain-containing proteins enter live cells through a receptor- and energy-independent mechanism. Translocation through biological membranes is conferred by the third α-helix of the homeodomain, also known as Penetratin. Biophysical studies demonstrate that entry of Penetratin into cells requires its binding to surface lipids but that binding and translocation are differentially affected by modifications of some physico-chemical properties of the peptide, like helical amphipathicity or net charge. This suggests that the plasma membrane lipid composition affects the internalization of Penetratin and that internalization requires both lipid binding and other specific properties. Using a phase transfer assay, it is shown that negatively charged lipids promote the transfer of Penetratin from a hydrophilic into a hydrophobic environment, probably through charge neutralization. Accordingly, transfer into a hydrophobic milieu can also be obtained in the absence of negatively charged lipids, by the addition of DNA oligonucleotides. Strikingly, phase transfer by charge neutralization was also observed with a variant peptide of same charge and hydrophobicity in which the tryptophan at position 6 was replaced by a phenylalanine. However, Penetratin, but not its mutant version, is internalized by live cells. This underscores that charge neutralization and phase transfer represent only a first step in the internalization process and that further crossing of a biological membrane necessitates the critical tryptophan residue at position 6.  相似文献   

6.
We have measured the efficiencies of two novel pseudo-peptidic carriers and various cell-penetrating peptides (Penetratin, (Arg)9 and the third helix of the homeodomain of Knotted-1) to deliver the same cargo inside cells. The cargo that was studied corresponds to the pseudo-substrate of protein kinase C. Cargo delivery was quantified using a recent method based on isotope labeling and MALDI-TOF MS. Results of cargo delivery were compared to the amounts of free CPP internalized inside cells. The third helix of Knotted gave the best results concerning free CPP cellular uptake. It was also found to be the most efficient carrier. This peptide thus emerges as a new CPP with very promising properties.  相似文献   

7.
8.
Peptides derived from the third alpha-helix of the homeodomain (residues 43-58; Penetratin) of Antennapedia, a Drosophila homeoprotein, were prepared by simultaneous multiple synthesis. Sets of N- and C-terminally truncated peptides, as well as a series of alanine substitution analogues, were studied. Cell penetration assays using human cell cultures with these peptides revealed that the C-terminal segment 52Arg-Arg-Met-Lys-Trp-Lys-Lys58 of the parent sequence was necessary and sufficient for efficient cell membrane translocation. Individual Ala substitutions of the peptide's basic residues led to markedly decreased cell internalization ability, whereas replacement of hydrophobic residues was tolerated surprisingly well. Subcellular localization was seen to be affected by substitutions, with analogues being addressed preferentially to the cytosol or to the nucleus. Conformational constriction of the Penetratin sequence through placement and oxidation of flanking cysteine residues afforded a cyclic disulfide peptide which had lost most of its membrane translocation capacity.  相似文献   

9.
Protein transduction domains (PTDs) are short amino acid sequences that promote their own translocation across the cell plasma membrane and have been studied for possible use in drug delivery and gene therapy. However, no direct method to quantify transduction is available. Here, using a new luciferase-tagged human PTD, we show that cellular uptake levels can be determined in a reliable manner. Furthermore, we show that enhanced in vivo tracking by human PTD can be quantified in a mouse model. This is the first report on the direct quantification of PTD transduction in vitro and in vivo, which will be necessary for studying its possible therapeutic application in drug delivery and gene therapy.  相似文献   

10.
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA–ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.  相似文献   

11.
The 60 amino acid long homeodomain of Antennapedia (Antp), either alone or as a fusion protein with 30–40 amino acid long foreign polypeptides, has been reported to cross biological membranes by an energy- and receptor-protein-independent mechanism. Moreover, the 16 amino acid long third helix of the Antp homeodomain, so-called penetratin, possesses translocation properties when fused to fewer than 100 amino acids as well. These findings led us to study whether such a protein tansduction property is shared by other homeodomains. We report here that homeodomains of two homeoproteins, Fushi-tarazu and Engrailed, are able to transduce a 238 amino acid long green fluorescent protein into cultured cells as efficiently as other well-known protein transduction domains, such as an internal oligopeptide of Tat and penetratin. These findings suggest that such transduction activity of homeodomains might have some physiological roles and that it can be exploited for development of efficient transduction vectors for research use and protein therapy.  相似文献   

12.
13.
The 60 amino acid long homeodomain of Antennapedia (Antp), either alone or as a fusion protein with 30-40 amino acid long foreign polypeptides, has been reported to cross biological membranes by an energy- and receptor-protein-independent mechanism. Moreover, the 16 amino acid long third helix of the Antp homeodomain, so-called penetratin, possesses translocation properties when fused to fewer than 100 amino acids as well. These findings led us to study whether such a protein tansduction property is shared by other homeodomains. We report here that homeodomains of two homeoproteins, Fushi-tarazu and Engrailed, are able to transduce a 238 amino acid long green fluorescent protein into cultured cells as efficiently as other well-known protein transduction domains, such as an internal oligopeptide of Tat and penetratin. These findings suggest that such transduction activity of homeodomains might have some physiological roles and that it can be exploited for development of efficient transduction vectors for research use and protein therapy.  相似文献   

14.
15.
Previous study in our laboratory confirmed that a novel polypeptide, CS5931 derived from Ciona savignyi possesses potent antitumor activity. In the present study, the full length cDNA of CS5931 precursor, termed Cs-pgrn-1 was cloned. The complete cDNA sequence of this gene consists of 685 bp containing an open reading frame (ORF) of 522 bp (173 amino acid residues). In silico analysis revealed that the polypeptide consists of two identical domains, similar with granulin (GRN) found in other species, and each of the domain encodes a polypeptide identical with CS5931. Phylogenetic analysis confirmed that CS5931 shares high homology with Ciona intestinalis GRN and is conserved during evolution. The polypeptide also shows high similarity with human GRN A, B, and C. Prediction of 3D protein structure revealed the 3D structure of CS5931 is very similar with human GRN A. The CS5931 was expressed using a prokaryotic expression system and the purified polypeptide inhibited the growth of several tumor cell lines in vitro via apoptotic pathway. Our study revealed that CS5931 has the potential to be developed as a novel antitumor agent.  相似文献   

16.
17.
18.
19.
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.  相似文献   

20.
A new homeobox-leucine zipper gene from Arabidopsis thaliana   总被引:3,自引:0,他引:3  
We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号