首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

2.
Hyaluronan synthases (HAS1–3) are integral plasma membrane proteins that synthesize hyaluronan, a cell surface and extracellular matrix polysaccharide necessary for many biological processes. It has been shown that HAS is partly localized in cholesterol-rich lipid rafts of MCF-7 cells, and cholesterol depletion with methyl-β-cyclodextrin (MβCD) suppresses hyaluronan secretion in smooth muscle cells. However, the mechanism by which cholesterol depletion inhibits hyaluronan production has remained unknown. We found that cholesterol depletion from MCF-7 cells by MβCD inhibits synthesis but does not decrease the molecular mass of hyaluronan, suggesting no major influence on HAS stability in the membrane. The inhibition of hyaluronan synthesis was not due to the availability of HAS substrates UDP-GlcUA and UDP-GlcNAc. Instead, MβCD specifically down-regulated the expression of HAS2 but not HAS1 or HAS3. Screening of signaling proteins after MβCD treatment revealed that phosphorylation of Akt and its downstream target p70S6 kinase, both members of phosphoinositide 3-kinase-Akt pathway, were inhibited. Inhibitors of this pathway suppressed hyaluronan synthesis and HAS2 expression in MCF-7 cells, suggesting that the reduced hyaluronan synthesis by MβCD is due to down-regulation of HAS2, mediated by the phosphoinositide 3-kinase-Akt-mTOR-p70S6K pathway.  相似文献   

3.
4.
In the first paper of this series, it was shown that a toxin from the sea anemone Stoichactis helianthus increased the permeability of black lipid membranes due to transmembrane channel formation. In the present study, we have used liposomes to examine the reactivity of the toxin with different phospholipids. Membrane damage was assessed by measuring the release of 86Rb+ and 14C-labeled membrane lipid. For the different lipids, the rank order of marker release was: sphingomyelin > C18: 2 phosphatidylcholine > C18: 1 phosphatidylcholine > C18: 0 phosphatidylcholine > C16: 0 phosphatidylcholine = C14: 0 phosphatidylcholine. In C14: 0 and C16: 0 phosphatidylcholine liposomes there was no 14C-labeled lipid release and only 13 to 16% 86Rb+ release which corresponds to the 86Rb+ content in the outermost aqueous shell of multilamellar liposomes. This indicates that membrane damage was limited to the outermost bilayer. In liposomes prepared with the other lipids, the extent of release of both markers increased proportionately with the length and the degree of unsaturation of the lipids' acyl side chains. Sphingomyelin liposomes were the most susceptible with 47% of the 14C-labeled lipid marker and 90% of the 86Rb+ marker being released. The large extent of 14C-labeled lipid release is attributed to a detergent-like activity of the toxin which presumably is due to the amphipathic nature of the protein. Thus, the toxin can inflict membrane damage in two ways: (1) channel formation, and (2) detergent action. The importance of one mechanism or the other apparently varies depending on membrane structure and lipid composition.  相似文献   

5.
The hydration characteristics of phosphatidylcholines and the effect of cholesterol on these were studied with differential thermal analysis and water vapour adsorption experiments. Also the water adsorption of egg phosphatidylethanolamine and the effect of cholesterol on this was studied and compared with corresponding qualities of phosphatidylcholine.The differential thermal analysis study showed that the monohydrates of egg, dipalmitoyl, and dioleoyl phosphatidylcholine tightly bind ~9 molecules of water per phosphatidylcholine molecule. Cholesterol is proved to somewhat increase the water binding of the phospholipids. Cholesterol is also shown to decrease the heat change of the chain melting transition of dioleoyl phosphatidylcholine, but not to abolish it completely.The water adsorption experiments indicate that the hydration of phosphatidylcholines takes place in two steps; a strong initial water binding and a second phase of weak binding. The adsorption isotherm of egg phosphatidylethanolamine is strikingly different from that of egg phosphatidylcholine. Cholesterol is shown, also by this method, to increase the hydration of phospholipids especially that of dipalmitoylphosphatidylcholine.The results in this study are in good agreement with those presented by many other authors. Starting with the accumulated information of the hydration characteristics of phosphatidylcholines the organization of the bound water around the polar group is discussed and the most probable model is evaluated.  相似文献   

6.
7.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

8.
Lysosomal phospholipases play a critical role for degradation of cellular membranes after their lysosomal segregation. We investigated the regulation of lysosomal phospholipase A1 by cholesterol, phosphatidylethanolamine, and negatively-charged lipids in correlation with changes of biophysical properties of the membranes induced by these lipids. Lysosomal phospholipase A1 activity was determined towards phosphatidylcholine included in liposomes of variable composition using a whole-soluble lysosomal fraction of rat liver as enzymatic source. Phospholipase A1 activity was then related to membrane fluidity, lipid phase organization and membrane potential as determined by fluorescence depolarization of DPH, 31P NMR and capillary electrophoresis. Phospholipase A1 activity was markedly enhanced when the amount of negatively-charged lipids included in the vesicles was increased from 10 to around 30% of total phospholipids and the intensity of this effect depended on the nature of the acidic lipids used (ganglioside GM1相似文献   

9.
10.
Reconstitution of glycophorin into dimyristoyl phosphatidylcholine and sphingomyelin vesicles was sub-maximal below the phase transition temperatures of these lipids. Reconstitution of glycophorin into diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine liposomes was maximal within a range of temperatures below the phase transition temperatures of dimyristoyl phosphatidylcholine and sphingomyelin but above the phase transition temperatures of diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine. These findings indicate a greater tendency for reconstitution of glycophorin into fluid as opposed to solid lipid phases.  相似文献   

11.
The Class I hyaluronan synthase (HAS) is a unique glycosyltransferase synthesizing hyaluronan (HA), a polysaccharide composed of GlcUA and GlcNAc, by using one catalytic domain that elongates two different monosaccharides. As for the synthetic mechanism, there are two alternative manners for the sugar elongation process. Some bacterial HASs add new sugars to the non-reducing end of the acceptor to grow polymers. On the other hand, some vertebrate enzymes seem to transfer sugars to the reducing end. Expression of vertebrate HASs as active and soluble proteins will accelerate further precise insight into mechanisms of sugar elongation reactions by natural HASs. Since large scale production of HA polymers and oligomers would become powerful tools both for basic studies and new biotechnology to create functional carbohydrates in medicinal purposes, advent of an efficient method for the expression of HASs in Escherichia coli is strongly expected. Here we communicate the first success of the production of recombinant human HAS2 proteins composed of only the catalytic region in E. coli as the active form. It was demonstrated that an engineered HAS2 expressed in E. coli exhibited significant activity to synthesize a mixture of HAS oligomers from 8-mer (HA8) to 16-mer (HA16). Engineered HAS2 prepared herein elongated sugars from exogenous tetrasaccharide to form polymers with a direction to the non-reducing end. According to the present results, large scale production of engineered recombinant HASs is to be performed using E. coli that will provide practical and economic advantages in manufacturing enzymes for use in the synthesis of various oligomeric HA molecules and their industrial applications.  相似文献   

12.
Thyroid eye disease is characterized by the infiltration of leukocytes and accumulation of hyaluronan (HA) in orbital tissue. Inflamed orbital tissue expands in size due to excessive HA and to the formation of scar tissue (fibrosis) and/or adipose accumulation. Transforming growth factor β (TGF-β) acts as a key inducer of fibrosis by enhancing extracellular matrix production. Treatment of primary human orbital fibroblasts with TGF-β led to significant increases in both HA synthesis and secretion. TGF-β also strongly induced hyaluronan synthase 1 (HAS1) and HAS2 mRNA levels, which increased 50- and 6-fold, respectively. Remarkably, the addition of the peroxisome proliferator-activated receptor (PPARγ) ligands pioglitazone (Pio) or rosiglitazone (Rosi) to TGF-β-treated orbital fibroblasts attenuated HA synthesis and reduced HAS1 and HAS2 mRNA levels. The attenuation of TGF-β function by Pio and Rosi was independent of PPARγ activity. Furthermore, Pio and Rosi treatment inhibited TGF-β-induced T cell adhesion to orbital fibroblasts. Our findings demonstrate that TGF-β plays an important role in HA synthesis and in the inflammatory response by enhancing or facilitating inflammatory cell infiltration and adhesion to orbital tissue. Pio and Rosi exhibit anti-fibrotic and anti-inflammatory activity and may be useful in treating thyroid eye disease.  相似文献   

13.
Cholesterol incorporation into lipid bilayers, in the form of multilamellar vesicles or extruded large unilamellar vesicles, has been quantitated. To this aim, the cholesterol contents of bilayers prepared from phospholipid:cholesterol mixtures 33-75 mol% cholesterol have been measured and compared with the original mixture before lipid hydration. There is a great diversity of cases, but under most conditions the actual cholesterol proportion present in the extruded bilayers is much lower than predicted. A quantitative analysis of the vesicles is thus required before any experimental study is undertaken.  相似文献   

14.
Liposomes containing highly purified phosphatidylinositol (PI) from plant origin selectively killed tumor cells from 8 out of 9 cultured cell lines, but did not kill 4 types of normal cells. Other phospholipids, including PI or phosphatidylserine from animal origin, synthetic phosphatidic acid, phosphatidyl-glycerol, or phosphatidylcholine, were not cytotoxic. Cholesterol enrichment of cells, shown by other investigators to inhibit tumor development, was slightly cytotoxic in this system, but the toxic effect of cholesterol was minor compared to the massive cytotoxicity induced by plant PI.  相似文献   

15.
Scientific evidence indicates that exogenous phospholipids in the form of liposomes can affect cell growth. Effects of liposomes on cell growth depend on several factors including composition of liposomes, lipid concentration, and type of cells studied. Because phagocytic cells such as monocytes and macrophages are natural targets of liposomes, intracellular delivery of drugs to modulate cellular activity of these cells is of interest. We explored the effects of phospholipid-based liposomes composed of soy bean phosphatidylcholine (PC) as the main lipid component on U-937 cell growth. Effects of charge-imposing lipids and cholesterol were also studied. In addition, we investigated whether phospholipid-based liposomes would exert any interaction on cell growth with propylthiouracil, a drug with known antiproliferative activity. We found that PC in the form of extruded liposomes had intrinsic antiproliferative activity on U-937 cells at concentrations of 200 microM and up without any appreciable cytotoxicity. Phosphatidylserine and phosphatidylglycerol, but not dicetlylphosphate, at 10 mol% increased growth retardation activity of PC liposomes. Cholesterol at 30 mol% did not have any effect on cell growth, except for liposomes composed of PC and phosphatidylserine, where growth retardation was negated in the presence of cholesterol. Synergistic effect on cell growth was seen with certain liposome compositions when 5.5 microg/mL of propylthiouracil was coincubated. The results of this study suggest that the effects of exogenous lipids on cell growth should be taken into consideration when PC-based liposomes are to be used as drug delivery systems, especially when the targets are cells with phagocytic activity.  相似文献   

16.
Fibroblasts from the fro/fro mouse, with a deletion in the Smpd3 gene coding for the active site of neutral sphingomyelinase 2 (NSMase2), secreted increased amounts of hyaluronan (HA). This was reversed by transfection with the Smpd3 gene, suggesting a connection between sphingolipid and glycosaminoglycan metabolism. The deficiency of NSMase2 resulted in storage of sphingomyelin (SM) and cholesterol with a 50% reduction in ceramides (Cer). RT-PCR and Western blot analysis showed that increased HA secretion resulted from increased hyaluronan synthase 2 (HAS2) activity localized to sphingolipid-enriched lipid rafts. Although cholesterol levels were also elevated in lipid rafts from mouse fibroblasts deficient in lysosomal acid SMase activity (deletion of the Smpd1(-/-) gene), there was no increase in HA secretion. We then showed that in fro/fro fibroblasts, the reduced ceramide was associated with decreased phosphorylation of protein phosphatase 2A (PP2A) and increased phosphorylation of its substrate Akt-p, together with PI3K, PDK1, mTOR (mammalian target of rapamycin), and p70S6K, although PTEN was unaffected. Exogenous ceramide, as well as inhibitors of Akt (Akt inhibitor VIII), PI 3-kinase (LY294002 and wortmannin), and mTOR (rapamycin) reduced secretion of HA, whereas the NSMase2 inhibitor GW4869 increased HA synthesis and secretion. We propose that NSMase2/Cer are the key mediators of the regulation of HA synthesis, via microdomains and the Akt/mTOR pathway.  相似文献   

17.
The influence of membrane lipid environment on the activity of GPI-anchored enzymes was investigated with human placental alkaline phosphatase reconstituted by a detergent-dialysis technique in liposomes composed of palmitoyloleoylphosphatidylcholine, alone or in mixture with lipids enriched along with the protein within lipid rafts: cholesterol, sphingomyelin, and GM1 ganglioside. The highest V max was recorded for a phosphatidylcholine/10% GM1 mixture (143 +/- 5 nmol of substrate hydrolyzed per minute per microgram of protein), while the lowest for a phosphatidylcholine/30% cholesterol mixture and for raft-mimicking 1:1:1 phosphatidylcholine/sphingolipid/cholesterol liposomes (M:M:M) (57 +/- 3 and 52 +/- 3, respectively). No significant differences in K m were detected. The protein segregation, assessed using the chemical cross-linker bis(sulfosuccinimidyl)suberate, increased with the protein:lipid ratio, within the 1:1200-1:4800 protein:lipid molar ratio range, but did not affect enzyme activity. The activity decreased when the order of the lipid bilayers was increased, higher for those containing cholesterol, as judged by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Finally, the GPI-enzyme activity was affected by membrane curvature. This result was suggested by a strong inverse correlation (Pearson's correlation coefficient = 0.91; p < 0.0001) between activity and liposome diameter, measured by laser light scattering and ranging between 59 +/- 6 nm for a phosphatidylcholine/10% GM1 mixture (displaying the highest activity) and 188 +/- 25 nm for a phosphatidylcholine/30% cholesterol mixture and 185 +/- 23 nm for raft-mimicking liposomes (displaying the lowest activities). The activity-membrane curvature relationship was further confirmed by comparing the activity of proteoliposomes having different sizes but identical lipid compositions. These data open the possibility that the activity of GPI-anchored enzymes may be modulated by membrane microenvironment features, in particular by membrane curvature and cholesterol-enriched ordered microenvironments, such as those of lipid rafts.  相似文献   

18.
Scientific evidence indicates that exogenous phospholipids in the form of liposomes can affect cell growth. Effects of liposomes on cell growth depend on several factors including composition of liposomes, lipid concentration, and type of cells studied. Because phagocytic cells such as monocytes and macrophages are natural targets of liposomes, intracellular delivery of drugs to modulate cellular activity of these cells is of interest. We explored the effects of phospholipid-based liposomes composed of soy bean phosphatidylcholine (PC) as the main lipid component on U-937 cell growth. Effects of charge-imposing lipids and cholesterol were also studied. In addition, we investigated whether phospholipid-based liposomes would exert any interaction on cell growth with propylthiouracil, a drug with known antiproliferative activity. We found that PC in the form of extruded liposomes had intrinsic antiproliferative activity on U‐937 cells at concentrations of 200 μM and up without any appreciable cytotoxiciy. Phosphatidylserine and phosphtidylglycerol, but not dicetlylphosphate, at 10 mol% increased growth retardation activity of PC liposomes. Cholesterol at 30 mol% did not have any effect on cell growth, except for liposomes composed of PC and phosphatidylserine, where growth retardation was negated in the presence of cholesterol. Synergistic effect on cell growth was seen with certain liposome compositions when 5.5 μg/mL of propylthiouracil was coincubated. The results of this study suggest that the effects of exogenous lipids on cell growth should be taken into consideration when PC-based liposomes are to be used as drug delivery systems, especially when the targets are cells with phagocytic activity.  相似文献   

19.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号