首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
目的:研究芸香苷对慢性脑低灌注导致大鼠认知功能障碍和脑损伤的影响。方法:采用双侧颈总动脉结扎法(bilateral common carotid artery occlusion,BCCAO)建立慢性脑低灌注大鼠模型,随机分为4组(n=10):生理盐水治疗模型组、芸香苷治疗模型组、生理盐水治疗假手术组、芸香苷治疗假手术组;连续腹腔注射芸香苷和生理盐水共12周。采用Morris水迷宫评定大鼠学习和记忆能力。采用分光光度法检测脑组织中枢胆碱能相关指标和氧化应激指标。应用免疫组织化学和El ISA方法检测脑组织炎症反应。采用Nissl染色法检测脑组织神经元缺失。结果:芸香苷治疗模型组大鼠的逃脱潜伏期较生理盐水治疗模型组明显减少(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗后显著提高了BCCAO大鼠脑组织中ACh水平(P0.01)和Ch AT活性(P0.01),并降低了ACh E活性(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗模型组显著增加了大鼠脑组织中SOD活性(P0.01)和GPX活性(P0.01),降低了MDA水平(P0.01)和蛋白质羰基化合物水平(P0.01)。芸香苷治疗模型组大鼠海马区GFAP-免疫阳性星型胶质细胞(P0.01)和Iba1-免疫阳性小胶质细胞(P0.01)面积百分比较生理盐水治疗模型组显著减少。芸香苷治疗模型组大鼠海马区正常神经元的数量较生理盐水治疗模型组大鼠显著增加(P0.01)。结论:芸香苷可改善慢性脑低灌注引起的大鼠认知功能障碍和脑损伤。  相似文献   

2.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

3.
This study was designed to assess the influence of St. Thomas Hospital cardioplegic solution (St. Th.) on heart preservation in rat hearts subjected to 6h ischemia when supplemented with iloprost. In the control group (n=8), nothing was added to St. Th., whereas 10 or 1000 nmol L(-1) iloprost was added in the second (n=7) and third (n=8) groups, respectively. Mechanical contraction parameters, cardiac tissue damage and oxidative stress markers were evaluated. The 10 nmol/L iloprost group peak systolic pressure (71.0+/-30.9 versus 41.0+/-9.4 mm Hg) and -dp/dtmax (1103.8+/-94.3 versus 678.6+/-156.8 mm Hg s(-1)) were significantly higher than control group at 30 min of reperfusion (p<0.05). Iloprost supplemented groups had higher GSH and catalase levels of coronary perfusate at reperfusion, in comparison with initial values (p<0.05). AST, CK, CK-MB values increased at 0 min of reperfusion and cTnI values at 45 min of reperfusion (p<0.05) in all groups with no difference between groups. According to our results, iloprost supplementation had mild but significant improvement in postischemic values in mechanical and oxidative stress parameters, resulting in better heart preservation.  相似文献   

4.
Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain.  相似文献   

5.
The cerebral ischemia in rats was induced by occluding bilateral common carotid arteries (BCCAO) for 30 min., followed by 45 min reperfusion. BCCAO caused significant depletion in superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and significant increase in lipid peroxidation along with severe neuronal damage in the brain. All the alterations except depletion in glutathione peroxidase and glutathione-S-transferase levels induced by cerebral ischemia were significantly attenuated by 15 days pretreatment with methanolic extract of P. dactylifera fruits (100, 300 mg/kg), whereas 30 mg/kg dose was insignificant in this regard. These results suggest the possible use P. dactylifera against bilateral common carotid artery occlusion induced oxidative stress and neuronal damage.  相似文献   

6.
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.  相似文献   

7.
The antioxidant activity of some compounds buffer the free radicals generated either endogenously or exogenously, thus decreasing the potential damage mediated by oxidation. Recent studies documented that raloxifene has antioxidant properties in vitro. However, there are limited animal studies available to show raloxifene's antioxidant properties. We aimed to investigate the effects of raloxifene on antioxidant enzymes such as SOD, CAT and GPX, TrxR and the levels of GSH and MDA in heart, liver and brain cortex of ovariectomized female rats. Female Sprague Dawley rats weighing 300-350 g (n=24) were divided into three groups: (I) Eight non-ovariectomized rats were used as naive controls without any treatment (non-ovariectomized group, n=8). Five weeks after ovariectomy, (II) Ovariectomized placebo group (n=8) was given physiological saline, and (III) Raloxifene group (n=8) was given raloxifene 1 mg/kg sc. daily for 12 days. Ovariectomy induced significant increases on SOD, GPX, CAT activity and MDA levels in brain, heart and liver tissues compared to non-ovariectomized rats ( p<0.05). Raloxifene treatment led to decreased levels of SOD activity in heart, GPX activity in brain and CAT activity in liver tissue when compared to ovariectomized group ( p<0.05) but there was no change in activity of TrxR in all groups. The levels of MDA in brain, heart and liver tissues increased in ovariectomized group when compared to non-ovariectomized rats ( p<0.05). Raloxifene had a significant attenuating effect on the levels of MDA in brain and heart tissues. Our results also indicate that the levels of GSH in brain, heart and liver tissue decreased when compared to non-ovariectomized rats. Raloxifene treatment was observed to significantly increase the levels of GSH in brain and heart tissues ( p<0.05). However, there were insignificant differences for the GSH levels in liver tissues of ovariectomized placebo or raloxifene groups. In conclusion, our results demonstrate that raloxifene may be more effective against oxidative stress in heart and brain than in liver tissue.  相似文献   

8.
Lithium (Li) and lamotrigine (LTG) have neuroprotective properties. However, the exact therapeutic mechanisms of these drugs have not been well understood. We investigated the antioxidant properties of Li (40 and 80 mg/kg/day) and LTG (20 and 40 mg/kg/day) in a rat model of global cerebral ischemia based on permanent bilateral occlusion of the common carotid arteries (BCAO). Nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione reductase (GSH-R), catalase (CAT) and superoxide dismutase (SOD) levels were measured as an indicator of oxidative–nitrosative stress in both prefrontal cortex (PFC) and hippocampus after 28 days of treatment. The spatial learning disability was also assessed at the end of the study by Morris water maze (MWM) test. All oxidative–nitrosative parameters were found to be higher in the groups under treatment than in sham. Both drugs caused a decrease in PFC NO and MDA elevation, meanwhile the increase in GSH, GSH-R, CAT and SOD levels was significantly more evident in treated groups. We also found higher PFC GSH-R and hippocampal SOD levels in BCAO + Li (80 mg/day) treated group when compared with BCAO + LTG 40 mg/day. MWM test data showed a similar increase in spatial learning ability in all groups under treatment. We found no other statistical difference in comparison of treated groups with different dosages. Our findings suggested that Li and LTG treatments may decrease spatial learning memory deficits accompanied by lower oxidative–nitrosative stress in global cerebral ischemia. Both drugs may have potential benefits for the treatment of vascular dementia in clinical practice.  相似文献   

9.
Volatile anaesthetic agents have been recognized for their neuroprotective properties since the 1960s. However, little is known regarding the potential retinoprotective effects of preconditioning by anaesthetic drugs. Retinal ischemia can be modeled by permanent bilateral common carotid artery occlusion (BCCAO). Here we studied the degree of ischemic injury with preconditioning by sevoflurane in the rat retina. During the BCCAO operation and preconditioning Wistar rats were anaesthetized with 1 MAC of sevoflurane. The oxygen, carbon dioxide, and anaesthetic vapor concentration in the anaesthetizing box was monitored with a gas analyzer. We examined 4 groups: non- and preconditioning groups in control and BCCAO animals. The duration of preconditioning period was 1?h and it was performed 1?day before BCCAO. The retinas were processed for histological evaluation after 2?weeks survival to determine the cell number in the ganglion cell layer and the thickness of the whole retina and that of all retinal layers. BCCAO-induced retinal ischemic injury was ameliorated by sevoflurane preconditioning. Retinal thickness and the cell number in the ganglion cell layer were more retained in preconditioned animals after BCCAO compared to non-preconditioned group. These results suggest that preconditioning using sevoflurane could provide a new perspective in retinoprotective strategies.  相似文献   

10.
Stroke causes brain injury in millions of people world wide each year. Despite the enormity of problem, currently there is no established therapy, which can restore the blood flow at infracted area and also improve the neurological deficit. The present study was carried out to investigate the effect of an endothelin antagonist (TAK-044) in middle cerebral artery (MCA) occlusion model of acute ischemic stroke in rats. Male Wistar rats were pretreated with TAK-044 (5 mg/kg, i.p.) for 7 days and thereafter subjected to focal ischemia by occlusion of MCA using intraluminal thread for two hours. 30 min after reperfusion the animals were subjected to diffusion-weighted imaging (DWI) for assessment of protective effect. Twenty-four hours later the motor performance was tested and subsequently the animals were sacrificed for estimation of markers of oxidative stress; malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Control group received vehicle (saline) and similar experimental protocol was followed. In the TAK-044 pretreated group, percent hemispheric lesion area (% HLA) in DWI was significantly attenuated 17.5 +/- 0.5% as compared to control group 61.2 +/- 5.9%. Significant motor impairment, with significant elevated levels of MDA, decrease in GSH and SOD were observed in the vehicle treated MCA occluded rats. Pretreatment with TAK-044 prevented the motor impairment and significantly reversed the changes in markers of oxidative stress (MDA, GSH and SOD). In addition to well-known vasodilatory effect, TAK-044 has recently been documented to have antioxidant and anti-inflammatory properties. These effects can contribute to the protection afforded by TAK-044 in the present study.  相似文献   

11.
Vascular dementia (VaD) is caused by the reduction of blood supply by vessel occlusion and is characterized by progressive cognitive decline. VaD incidence has been growing due to the aging population, placing greater strain on social and economic resources. However, the pathological mechanisms underlying VaD remain unclear. Many studies have used the bilateral common carotid artery occlusion (BCCAO) animal model to investigate potential therapeutics for VaD. In this study, we investigated whether bee venom (BV) improves cognitive function and reduces neuroinflammation in the hippocampus of BCCAO animals. Animals were randomly divided into three groups: a sham group (n = 15), BCCAO control group (n = 15), and BV-treated BCCAO group (n = 15). BCCAO animals were treated with 0.1 μg/g BV at ST36 (“Joksamli” acupoint) four times every other day. In order to investigate the effect of BV treatment on cognitive function, we performed a Y-maze test. In order to uncover any potential relationship between these results and neuroinflammation, we also performed Western blotting in the BCCAO group. Animals that had been treated with BV showed an improved cognitive function and a reduced expression of neuroinflammatory proteins in the hippocampus, including Iba-1, TLR4, CD14, and TNF-α. Furthermore, we demonstrated that BV treatment increased pERK and BDNF in the hippocampus. The present study thus underlines the neuroprotective effect of BV treatment against BCCAO-induced cognitive impairment and neuroinflammation. Our findings suggest that BV may be an effective complementary treatment for VaD, as it may improve cognitive function and attenuate neuroinflammation associated with dementia.  相似文献   

12.
This study evaluated the efficacy of a prostacyclin analog, iloprost, and a thromboxane A2 receptor antagonist, daltroban, as inhibitors of experimental intimal hyperplasia. The vascular injury model used is based on an endothelial injury induced by a brief infusion of air into an isolated segment of the common carotid artery in the rat. Iloprost and daltroban were administered by continuous IV infusion for two weeks. The infusion rates were 0.1 micrograms/kg/min for iloprost and 0.1 mg/kg/hr for daltroban; these dosing rates are associated with significant alterations in eicosanoid-related pharmacologic effects. The animals were sacrificed at two weeks and the carotid arteries fixed in situ for light microscopy. The myointimal thickening was measured as the intima to media area (I/M) ratio. The control animals developed marked intimal thickening, with an I/M ratio of 0.76 +/- 0.12 (mean +/- SEM; N = 7). There was no inhibition of intimal hyperplasia (P greater than 0.05) after either iloprost (I/M ratio: 1.04 +/- 0.13; N = 8) or daltroban (I/M ratio: 0.70 +/- 0.04; N = 6). It is concluded that neither of these two modulators of eicosanoid activity, iloprost and daltroban, inhibit intimal hyperplasia following experimental endothelial injury.  相似文献   

13.
Anaesthetized mongrel dogs were subjected to occlusion of a coronary artery. The resulting myocardial infarction was observed for three hours. One hour after occlusion, infusion of the stable prostacyclin analogue iloprost or saline was started. In the control group myocardial infarction was associated with an increase of the ratio TXB2/6-keto-PGF1a which was abolished by iloprost treatment. After occlusion in the control group, the atherosclerosis index (TC-HDLC): HDLC was increased, but in the iloprost-treated group it was significantly decreased. The results of this study suggest that the administration of iloprost is able to prevent changes in eicosanoid metabolism and lipoprotein pattern after coronary artery occlusion in dogs.  相似文献   

14.
In this study, the effects of iloprost (ZK 36374) and NDGA on warm ischemia and reperfusion injury in rat liver were investigated. Rats were given isotonic saline (control group), iloprost 25 micrograms/kg i.v. (group II) just before warm ischemia or NDGA 10 micrograms/kg i.v. (group III) 5 min before reperfusion or the same drugs were given together (group IV). Serum SGOT, SGPT, and LDH values and tissue malondialdehyde (MDA), glutathione (GSH), prostaglandin (PG)E2, and leukotriene (LT)C4 levels were determined after ischemia-reperfusion injury. Histopathologic examination of the liver was carried out under the light microscope. The serum SGOT, SGPT and LDH levels improved significantly in groups II, III, and IV when compared with the control group (p < 0.05). There was a significant decrease (p < 0.05) in tissue MDA levels and significant increase (p < 0.05) in tissue GSH levels in group I, when compared with group IV and the control groups. The values did not differ significantly in group IV when compared to controls. The LTC4/PGE2 ratio was low and histologic findings were worse in group III. In conclusion, iloprost was found to be beneficial in preventing the ischemia-reperfusion injury in the rat livers. NDGA, either by direct toxic effect or by shifting the arachidonic acid metabolism to the cyclooxygenase route, was not found to be as effective. Iloprost and NDGA did not exert a synergist effect.  相似文献   

15.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

16.
We previously showed a hydroxamic acid-based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen-glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation–mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi-compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.  相似文献   

17.
We investigated both the effect of levosimendan and the role of oxidant/antioxidant status and trace element levels in the pulmonary artery of rats. Fourteen male Wistar albino rats were randomly divided into two groups of seven animals each. Group 1 was not exposed to levosimendan and served as a control. Levosimendan (12 μg/kg) diluted in 10 ml 0.9 % NaCl was administered intraperitoneally to group 2. Animals of both groups were killed after 3 days, and their pulmonary arteries were harvested to determine changes in tissue oxidant/antioxidant status and trace element levels. The animals in both groups were killed 72 h after the levosimendan exposure treatment, and pulmonary arteries were harvested to determine levels of the lipid peroxidation product MDA and the antioxidant GSH as well as the decreased activity of antioxidant enzymes such as SOD, GSH-Px and CAT. It was found that MDA levels increased in pulmonary artery tissues of rats after levosimendan administration. The GSH level decreased in the pulmonary artery of rats after levosimendan treatment. Co, Mn, Fe, Cd and Pb levels were significantly higher (P < 0.001) and Mg, Zn and Cu levels significantly lower (P < 0.001) in the levosimendan group compared to the control group. These results suggest that levosimendan treatment caused an increase in free radical production and a decrease in antioxidant enzyme activity in the pulmonary artery of levosimendan-treated rats. It also caused a decrease or increase in the levels of many minerals in the pulmonary artery, which is an undesirable condition for normal pharmacological function.  相似文献   

18.
Various protocols may be used for acute pancreatitis treatment. Recently, the benefit of hyperbaric oxygen (HBO) has been demonstrated. To clarify the mechanism of HBO on the process of the acute pancreatitis, we determined the levels of antioxidant enzymes in an acute pancreatitis model. Forty-five Sprague-Dawley rats were randomly divided into three groups: Group I: sham group (n=15), Group II: pancreatitis group (n=15), Group III: pancreatitis group undergoing HBO therapy (n=15). HBO was applied postoperatively for 5 days, two sessions per day at 2.5 fold absolute atmospheric pressure (ATA) for 90 min. Superoxide dismutase (Cu/Zn-SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH Px) activity were measured in pancreatic tissue and erythrocyte lysate. MDA and GSH Px were also determined in plasma. In addition, amylase levels were measured in the serum. While serum amylase levels and MDA values in erythrocyte, plasma and pancreatic tissue were decreased, the levels of GSH Px and SOD were found to be significantly increased in the Group III as compared to those of the Group II. The findings of our study suggest that HBO has beneficial effects on the course of acute pancreatitis and this effect may occur through the antioxidant systems.  相似文献   

19.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in a diverse range of pathological conditions. To analyze the roles of RAGE and its decoy receptor, endogenous secretory RAGE (esRAGE), in the global cerebral ischemia, three different mouse cohorts, wild-type, RAGE−/−, and esRAGE transgenic (Tg) mice were subjected to bilateral common carotid artery occlusion (BCCAO). RT-PCR and immunohistochemical analysis revealed that expression of RAGE was induced in the vascular cells at 12 h, and then in the neurons and glia from 3 to 7 days in the hippocampus after BCCAO. The numbers of surviving neurons in the hippocampal CA1 region were significantly higher in RAGE−/− and esRAGE Tg mice than those in wild-type mice in the periods between 24 h and 7 days after BCCAO. Lower levels of 3-nitrotyrosine (3-NT) and higher levels of endothelial nitric oxide synthase (eNOS), together with enlarged vascular areas were observed in RAGE−/− and esRAGE Tg mice at 12 h after BCCAO. In the later periods, expressions of glia-derived inflammatory mediators TNFα and inducible nitric oxide synthase (iNOS) were reduced in RAGE−/− and esRAGE Tg mice. These results suggest that RAGE may contribute to delayed neuronal death after global cerebral ischemia by enhancing vascular injury and deleterious glia-mediated inflammation.  相似文献   

20.
The objective of this study was to investigate antioxidant and cytoprotective properties of iloprost in a distant organ after ischaemia reperfusion injury. Male Wistar rats were divided into two groups. After application of anesthaesia both hindlimbs were occluded. A 2-h reperfusion procedure was carried out after 60 min of ischemia. Study group (STU) rats (n=10) received 10 microg kg(-1) iloprost in 1 ml of saline from the tail vein 10 min before reperfusion. Control (CON) group rats (n=10) received an equal amount of saline. The rats were sacrificed by injection of a high dose of thiopentone sodium. Blood and tissue samples (right kidneys) were taken for analysis. Differences in malondialdehyde (MDA), myeloperoxidase (MPO), Na+-K+ ATPase and total antioxidant capacity (TAC) between the groups were analysed. MPO, MDA and TAC levels in the sera of CON and STU groups were 1.60+/-0.26 U l(-1), 11.42+/-5.23 nmol ml(-1), 8.30 x 10(-2)+/- 3.93 x 10(-2) nmol ml(-1) h(-1) and 1.07+/-0.11 U l(-1), 7.60+/-1.81 nmol ml(-1) and 0.15+/-3.23 x 10(-2) nmol ml(-1) h(-1) (p=0.0001, p=0.043 and p=0.0001 respectively). MPO, ATPase and MDA levels in kidneys for CON and STU groups were 1.24+/-0.58 U g(-1), 85.70+/-52.05 nmol mg(-1), 17.90+/-7.40 nmol ml(-1) and 0.78+/-0.31 U g(-1), 195.90+/-56.13 nmol mg(-1) and 10.10+/-0.99 nmol ml(-1) (p=0.046, p=0.0001 and p=0.009 respectively). When given prior to reperfusion, the positive effect of iloprost in the attenuation of distant organ reperfusion injury has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号