首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
J W Daly  R F Bruns  S H Snyder 《Life sciences》1981,28(19):2083-2097
Adenosine has a significant role in many functions of the central nervous system. Behaviorally, adenosine and adenosine analogs have marked depressant effects. Electrophysiologically, adenosine reduces spontaneous neuronal activity and inhibits transsynaptic potentials via interaction with extracellular receptors. Biochemically, adenosine inhibits adenylate cyclase via a “high” affinity receptor, and activates adenylate cyclase via a “low” affinity receptor. These receptors, called “A1” and “A2” respectively, show differing profiles for activation by adenosine analogs. Radioactive N6-cyclohexyladenosine binds selectively to the “high” affinity receptor. One major class of antagonists is known at adenosine receptors: the alkylxanthines, including caffeine and theophylline. Radioactive 1,3-diethyl-8-phenylxanthine, a particularly potent antagonist, appears to bind to both low and high affinity adenosine receptors. Behavioral, electrophysiological, and biochemical effects of alkylxanthines are consistent with the hypothesis that the central stimulatory actions of caffeine and theophylline are due in large part to antagonism of central adenosine receptors.  相似文献   

4.
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction.Riboflavin is the substrate for biosynthesis of the essential flavocoenzymes FMN and FAD, which occur in all kingdoms of life and have roles in diverse redox reactions as well as in other processes such as DNA repair, light sensing, and bioluminescence (Fischer and Bacher, 2005). Plants and many microorganisms can synthesize riboflavin, but humans and other animals cannot, so they must obtain it from the diet (Powers, 2003). Plant foods are important sources of riboflavin for humans, and the riboflavin pathway is a target for engineering biofortified crops (Fitzpatrick et al., 2012).Riboflavin biosynthesis proceeds via the same pathway in bacteria and plants (Fischer and Bacher, 2005; Roje, 2007). This pathway starts from GTP, which is converted by GTP cyclohydrolase II (named RibA in Escherichia coli) to the pyrimidine derivative 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-P. Deamination of the pyrimidine ring then yields 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5′-P, and subsequent reduction of the ribosyl moiety gives 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-P. After dephosphorylation, this product is condensed with 3,4-dihydroxy-2-butanone 4-P to give 6,7-dimethyl-8-ribityllumazine, whose dismutation yields riboflavin. Figure 1 shows the first four steps of this pathway.Open in a separate windowFigure 1.The first four steps of the riboflavin biosynthesis pathway in bacteria and plants. The enzymes involved are GTP cyclohydrolase II (RibA), pyrimidine deaminase (Deam), pyrimidine reductase (Red), and a specific phosphatase (Pase). Enzymes for which the plant genes are not known are colored red. Intermediates are as follows: 1, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-P; 2, 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5′-P; 3, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-P; 4, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione.In E. coli, the deamination and reduction steps are catalyzed by a single bifunctional enzyme, RibD, which has N-terminal deaminase and C-terminal reductase domains that retain their respective activities when expressed separately (Richter et al., 1997; Magalhães et al., 2008). The situation in plants seems superficially similar but is in fact more complex (Gerdes et al., 2012). The bidomain bacterial RibD protein has two types of homologs in plants (Fischer et al., 2004; Chatwell et al., 2006; Chen et al., 2006), here called PyrD and PyrR, both with apparent deaminase and reductase domains (Fig. 2A). Only PyrD, represented by At4g20960, has been studied biochemically; it was found to have pyrimidine deaminase but not reductase activity (Fischer et al., 2004). The function of PyrR, represented by At3g47390, is unknown, although it has been inferred to have reductase activity (Chatwell et al., 2006; Chen et al., 2006; Ouyang et al., 2010) and perhaps to lack deaminase activity (Ouyang et al., 2010). Another mystery surrounding PyrR proteins is the presence of an extra C-terminal domain of unknown function (COG3236 in the Clusters of Orthologous Groups database; Fig. 2A); this domain occurs as a stand-alone protein in many bacteria. One possibility is that it catalyzes the dephosphorylation that follows the pyrimidine reduction step in the pathway (Fig. 1). The phosphatase involved is most likely substrate specific, but it has not been identified in plants or any other organism (Roje, 2007; Gerdes et al., 2012), and genes for enzymes in the same pathway, especially for successive steps, are quite commonly fused (Suhre, 2007). A mutation (phs1) that deleted the COG3236 domain from Arabidopsis (Arabidopsis thaliana) PyrR resulted in a photosensitive phenotype that could be rescued by supplied FAD (Ouyang et al., 2010).Open in a separate windowFigure 2.Structure and phylogeny of plant PyrD and PyrR proteins. A, Domain architectures. The examples shown are Arabidopsis At4g20960 and At3g47390; the predicted plastid targeting peptide (TP) varies in length between species. B, Phylogenetic tree of PyrD and PyrR proteins. Sequences were aligned with ClustalW; the tree was built by the neighbor-joining method with MEGA5. Bootstrap values (%) for 1,000 replicates are next to the nodes. Only the tree topology is shown. Note that the PyrD proteins of green algae (underlined) lack a reductase domain. C, Alignments showing the conservation of the zinc-binding residues (arrowheads) in the deaminase domain of PyrD but not PyrR proteins and the conservation of the predicted substrate-binding residues (asterisks) in the reductase domain of PyrR but not PyrD proteins. The deaminase sequences correspond to residues 45 to 85 of B. subtilis RibD (synonym RibG); the reductase sequences correspond to residues 150 to 210 and (separated by dots) 288 to 292 of B. subtilis RibD. Identical zinc- or substrate-binding residues are black, and conservative replacements are gray. Dashes indicate gaps that maximize the alignment.The plant riboflavin synthesis pathway is considered to be plastidial (Roje, 2007), but this location is based almost solely on bioinformatics and high-throughput proteome analyses (Gerdes et al., 2012). In only one case is there more definitive experimental support: in vitro chloroplast import data for the pathway’s penultimate enzyme, 6,7-dimethyl-8-ribityllumazine synthase (Jordan et al., 1999). Similarly, clear genetic support for the function of most plant riboflavin synthesis enzymes is lacking (Gerdes et al., 2012), the exception being an Arabidopsis RibA homolog (Hedtke and Grimm, 2009).The work reported here established, using maize (Zea mays) and Arabidopsis, that PyrR is indeed the missing pyrimidine reductase, that it lacks deaminase activity, and that its COG3236 domain is not essential for pyrimidine reductase activity and most likely lacks phosphatase activity. We also demonstrated the import of PyrR and PyrD into chloroplasts in vitro and confirmed that the gene for PyrR is essential.  相似文献   

5.
6.
Reconstitution of succinate-Q reductase is achieved by admixing soluble succinate dehydrogenase (SDH) and ubiquinone-protein-S (QP-S), a new protein isolated from the soluble cytochrome b-c1 complex. The reconstituted reductase catalyzes reduction of Q by succinate. The reaction is fully sensitive to thenoyltrifluoroacetone. The reconstituted reductase (same as succinate-cytochrome c reductase or submitochondrial particles) does not show “low concentration ferricyanide reductase activity” as soluble dehydrogenase does. In other words, this enzymic site on SDH is occupied by QP-S. When an artificial dye, such as phenazine methosulfate or Wurster's Blue, is used as electron acceptor the rate of oxidation of succinate by SDH is not significantly changed regardless of whether the dehydrogenase is in the free or in the reconstituted succinate-Q reductase forms.  相似文献   

7.
Concanavalin A (Con A) is known to exist in two conformations that differ in their capacity to bind metals and sugars. The conformation that binds metals tightly and has a high affinity for sugars is termed the “locked” form and the conformation with low affinity for sugars and binds metals weakly is termed the “unlocked” form. It has recently been reported [Brown, et al. Biochemistry 21, 465(1982)] that apo-Con A will form the locked conformation in the absence of metals to the extent of 12.5% when equilibrated at 25°C for one week. In this report we show that Con A will not assume the locked conformation in the complete absence of metals and that only trace amounts of Ca2+ can catalytically convert a significant amount of the protein into the locked conformation.  相似文献   

8.
9.
An improved synthesis for cobalt-cytochrome c has been developed; its half reduction potential is ?140 ± 20mV. Reduced Cocyt-c3 is oxidized by bovine heart cytochrome c oxidase at a rate ~45% that of the native cytochrome c. It is not reduced by mitochondrial NADH or succinate cytochrome c reductase nor by microsomal NADH or NADPH cytochrome c reductase.  相似文献   

10.
1-Methylisoguanosine, a marine natural product with potent muscle-relaxant and cardiovascular actions in vivo, interacts directly with adenosine receptors in guinea-pig brain slices to stimulate adenylate cyclase. These effects are blocked by theophylline. Comparison of the in vivo pharmacological activity of a number of synthetic analogues of 1-methylisoguanosine with in vitro adenylate cyclase-stimulating ability indicates that compounds lacking the latter biochemical activity have little muscle-relaxant activity. Adenosine is a potent stimulator of adenylate cyclase but is inactive in vivo because of rapid removal from the extracellular environment by uptake and deamination. Unlike adenosine, 1-methylisoguanosine is resistant to deamination and is only poorly accumulated by brain tissue slices or homogenates containing synaptosomes. Since it is an extremely weak competitive inhibitor of adenosine deaminase and only a weak inhibitor of adenosine uptake, it is unlikely to act by potentiating the effects of adenosine itself at extracellular receptors. Thus, the pharmacological effects of 1-methylisoguanosine are apparently due to its actions as a long-lasting adenosine analogue.  相似文献   

11.
12.
The linkage pattern of the K6-antigen was investigated using material from the urinary pathogen, Escherichia coli LP 1092. The polysaccharide consists of ribose and 3-deoxy-D-manno-2-octulosonate (KDO) in a ratio of 2:1. Colorimetric procedures, Smith degradation, methylation analysis, and nuclear magnetic resonance spectroscopy were applied to the whole polysaccharide and to a trisaccharide “repeating unit” obtained by mild-acid catalyzed hydrolysis. Together, the data are compatible only with a branched chain structure …3Ribfβ1→7KDOpβ2→3Ribfβ
  相似文献   

13.
14.
In analogy to “specific gravity” or “specific heat” the expression “weight specific metabolic rate” (Ultsch, 1973) would be correct if the metabolic rate were directly proportional to body weight. In that case the quotient metabolic rate divided by body weight would be a constant, independent of body weight like density or specific heat are constants. The metabolic rate, however, is not proportional to body weight but to its 34 power. I have stated that heat flow per unit body weight has no proper physical or physiological meaning (Kleiber, 1970), but since found such a physiological meaning: in work with tracers turnover rates are measured as quotients of transfer rates/pool content. For similometric animals pool contents are proportional to body weight. For such animals therefore the quotient metabolic rate/body weight may have a proper physiological meaning, namely the turnover rate of chemical energy in the animal body.The usefulness of the turnover rate is limited. For the calculation of the energy requirement of horizontal animal locomotion, for example, the calculation from the metabolic rate per animal is preferable to the calculation based on the metabolic rate per unit body weight.  相似文献   

15.
16.
The steroid hormone-receptor complex concentrations measured by “differential dissociation” techniques have to be corrected to obtain the true concentrations of receptor binding sites (Bs). For the calculation of Bs, the parameters kn (product of the equilibrium association constant and the concentration of binding sites of the “nonspecific” component) and f (fraction of the nonspecific binding measured in the experimental estimates of bound ligand by a given technique), previously proposed by Blondeau and Robel (J. P. Blondeau and P. Robel, 1975, Eur. J. Biochem.55, 375–384) are important. A new parameter of interest, ? [? = knf(kn + 1)], is discussed. The measurement of this parameter ? for three “differential dissociation” techniques allows the comparison of their efficiency and their reliability under various conditions for hormone receptor measurement in cytosol. Charcoal and hydroxylapatite methods are more efficient than the Sephadex G-25 filtration method. It is demonstrated that the “isotopic dilution” correction generally used for the estimation of the background of a given technique may be incorrect whatever the method of correction. A new method, the “double concentration measurement,” is developed. This method is simple, rapid, and precise. It requires two receptor binding measurements at two different saturating concentrations of ligand. This method allows the measurement of the estradiol receptor binding activity from calf uterine cytosol, with an error of less than 5% in samples containing the receptor either free or previously complexed with radioactive hormone, even in the presence of very high concentrations (≤0.5 μm) of radioactive steroid.  相似文献   

17.
18.
In order to investigate the mechanism of glucose repression of the N-acetylglucosamine metabolic enzymes in Candidaalbicans, an obligatory aerobic yeast, the activities of the following inducible enzymes were assayed: the N-acetylglucosamine uptake, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase. In the presence of glucose or other sugars e.g. succinate and glycerol, synthesis of these enzymes took place at a normal rate, suggesting that the hexose produces no catabolite repression in this organism. On the contrary, strong inhibition by glucose was observed on the activities of N-acetylglucosamine uptake and deaminase in N-acetylglucosamine-grown cells of Saccharomycescerevisiae, a facultative aerobe. From the results, it is concluded that “glucose effect” or catabolite repression is absent in Candidaalbicans, a pathogenic strain of yeast.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号