首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role for RAD18 in homologous recombination in DT40 cells   总被引:2,自引:0,他引:2       下载免费PDF全文
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.  相似文献   

2.
Ubiquitination of proliferating-cell nuclear antigen (PCNA) at K164 by RAD6/RAD18 has a key role in DNA damage tolerance in yeast. Here, we report on the first genetic study of this modification in a vertebrate cell. As in yeast, mutation of K164 of PCNA to arginine in the avian cell line DT40 results in sensitivity to DNA damage but, by contrast, the DT40 pcnaK164R mutant is more sensitive than the rad18 mutant. Consistent with this, we show the presence of residual ubiquitination of PCNA at K164 in the absence of functional RAD18, suggesting the presence of an alternate PCNA ubiquitinating enzyme in DT40. Furthermore, RAD18 and PCNA K164 have non-overlapping roles in the suppression of sister chromatid exchange in DT40, showing that RAD18 has other functions that do not involve the ubiquitination of PCNA.  相似文献   

3.
REV1 is central to the DNA damage response of eukaryotes through an as yet poorly understood role in translesion synthesis. REV1 is a member of the Y-type DNA polymerase family and is capable of in vitro deoxycytidyl transferase activity opposite a range of damaged bases. However, non-catalytic roles for REV1 have been suggested by the Saccharomyces cerevisiae rev1-1 mutant, which carries a point mutation in the N-terminal BRCT domain, and the recently demonstrated ability of the mammalian protein to interact with each of the other translesion polymerases via its extreme C-terminus. Here, we show that a region adjacent to this polymerase interacting domain mediates an interaction with PCNA. These C-terminal domains of REV1 are necessary, although not sufficient, for effective tolerance of DNA damage in the avian cell line DT40, while the BRCT domain and transferase activity are not directly required. Together these data provide strong support for REV1 playing an important non-catalytic role in coordinating translesion synthesis. Further, unlike in budding yeast, rad18 is not epistatic to rev1 for DNA damage tolerance suggesting that REV1 and RAD18 play largely independent roles in the control of vertebrate translesion synthesis.  相似文献   

4.
5.
DNA damage tolerance pathways facilitate the bypass of DNA lesions encountered during replication. These pathways can be mechanistically divided into recombinational damage avoidance and translesion synthesis, in which the lesion is directly bypassed by specialised DNA polymerases. We have recently shown distinct genetic dependencies for lesion bypass at and behind the replication fork in the avian cell line DT40, bypass at the fork requiring REV1 and bypass at post-replicative gaps requiring PCNA ubiquitination by RAD18. The WRN helicase/exonuclease, which is mutated in the progeroid and cancer predisposition disorder Werner's Syndrome, has previously been implicated in a RAD18-dependent DNA damage tolerance pathway. However, WRN has also been shown to be required to maintain normal replication fork progression on a damaged DNA template, a defect reminiscent of REV1-deficient cells. Here we use the avian cell line DT40 to demonstrate that WRN assists REV1-dependent translesion synthesis at the replication fork and that PCNA ubiquitination-dependent post-replicative lesion bypass provides an important backup mechanism for damage tolerance in the absence of WRN protein.  相似文献   

6.
Translesion DNA synthesis is a mechanism of DNA damage tolerance, and mono-ubiquitination of proliferating cell nuclear antigen (PCNA) is considered to play a key role in regulating the switch from replicative to translesion DNA polymerases (pols). In this study, we analyzed effects of a replicative pol δ on PCNA mono-ubiquitination with the ubiquitin-conjugating enzyme and ligase UBE2A/HHR6A/RAD6A-RAD18. The results revealed that PCNA interacting with pol δ is a better target for ubiquitination, and PCNA mono-ubiquitination could be coupled with DNA replication. Consequently, we could reconstitute replication-coupled switching between pol δ and a translesion pol, pol η, on an ultraviolet-light-irradiated template. With this system, we obtained direct evidence that polymerase switching reactions are stimulated by mono-ubiquitination of PCNA, depending on a function of the ubiquitin binding zinc finger domain of pol η. This study provides a framework for detailed analyses of molecular mechanisms of human pol switching and regulation of translesion DNA synthesis.  相似文献   

7.
UV lesions in the template strand block the DNA replication machinery. Genetic studies of the yeast Saccharomyces cerevisiae have indicated the requirement of the Rad6-Rad18 complex, which contains ubiquitin-conjugating and DNA-binding activities, in the error-free and mutagenic modes of damage bypass. Here, we examine the contributions of the REV3, RAD30, RAD5, and MMS2 genes, all of which belong to the RAD6 epistasis group, to the postreplication repair of UV-damaged DNA. Discontinuities, which are formed in DNA strands synthesized from UV-damaged templates, are not repaired in the rad5Delta and mms2Delta mutants, thus indicating the requirement of the Rad5 protein and the Mms2-Ubc13 ubiquitin-conjugating enzyme complex in this repair process. Some discontinuities accumulate in the absence of RAD30-encoded DNA polymerase eta (Poleta) but not in the absence of REV3-encoded DNA Polzeta. We concluded that replication through UV lesions in yeast is mediated by at least three separate Rad6-Rad18-dependent pathways, which include mutagenic translesion synthesis by Polzeta, error-free translesion synthesis by Poleta, and postreplication repair of discontinuities by a Rad5-dependent pathway. We suggest that newly synthesized DNA possessing discontinuities is restored to full size by a "copy choice" type of DNA synthesis which requires Rad5, a DNA-dependent ATPase, and also PCNA and Poldelta. The possible roles of the Rad6-Rad18 and the Mms2-Ubc13 enzyme complexes in Rad5-dependent damage bypass are discussed.  相似文献   

8.
Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis. Monoubiquitylated PCNA can be polyubiquitylated on lysine 63 of ubiquitin by a further ubiquitin-conjugating complex. This modification promotes a template switching bypass process in yeast, while its role in higher eukaryotes is less clear.We investigated the function of PCNA ubiquitylation using a PCNAK164R mutant DT40 chicken B lymphoblastoma cell line, which is hypersensitive to DNA damaging agents such as methyl methanesulfonate (MMS), cisplatin or ultraviolet radiation (UV) due to the loss of PCNA modifications. In the PCNAK164R mutant we also detected cell cycle arrest following UV treatment, a reduced rate of damage bypass through translesion DNA synthesis on synthetic UV photoproducts, and an increased rate of genomic mutagenesis following MMS treatment. PCNA-ubiquitin fusion proteins have been reported to mimic endogenous PCNA ubiquitylation. We found that the stable expression of a PCNAK164R-ubiquitin fusion protein fully or partially rescued the observed defects of the PCNAK164R mutant. The expression of a PCNAK164R-ubiquitinK63R fusion protein, on which the formation of lysine 63-linked polyubiquitin chains is not possible, similarly rescued the cell cycle arrest, DNA damage sensitivity, reduction of translesion synthesis and increase of MMS-induced genomic mutagenesis. Template switching bypass was not affected by the genetic elimination of PCNA polyubiquitylation, but it was reduced in the absence of the recombination proteins BRCA1 or XRCC3. Our study found no requirement for PCNA polyubiquitylation to protect cells from replication-stalling DNA damage.  相似文献   

9.
The 9-1-1 DNA clamp is required for immunoglobulin gene conversion   总被引:1,自引:0,他引:1  
Chicken DT40 cells deficient in the 9-1-1 checkpoint clamp exhibit hypersensitivity to a variety of DNA-damaging agents. Although recent work suggests that, in addition to its role in checkpoint activation, this complex may play a role in homologous recombination and translesion synthesis, the cause of this hypersensitivity has not been studied thoroughly. The immunoglobulin locus of DT40 cells allows monitoring of homologous recombination and translesion synthesis initiated by activation-induced deaminase (AID)-dependent abasic sites. We show that both the RAD9−/− and RAD17−/− mutants exhibit substantially reduced immunoglobulin gene conversion. However, the level of nontemplated immunoglobulin point mutation increased in these mutants, a finding that is reminiscent of the phenotype resulting from the loss of RAD51 paralogs or Brca2. This suggests that the 9-1-1 complex does not play a central role in translesion synthesis in this context. Despite reduced immunoglobulin gene conversion, the RAD9−/− and RAD17−/− cells do not exhibit a prominent defect in double-strand break-induced gene conversion or a sensitivity to camptothecin. This suggests that the roles of Rad9 and Rad17 may be confined to a subset of homologous recombination reactions initiated by replication-stalling lesions rather than those associated with double-strand break repair.  相似文献   

10.
Differential modifications of proliferating cell nuclear antigen (PCNA) determine DNA repair pathways at stalled replication forks. In yeast, PCNA monoubiquitination by the ubiquitin ligase (E3) yRad18 promotes translesion synthesis (TLS), whereas the lysine-63-linked polyubiquitination of PCNA by yRad5 (E3) promotes the error-free mode of bypass. The yRad5-dependent pathway is important to prevent genomic instability during replication, although its exact molecular mechanism is poorly understood. This mechanism has remained totally elusive in mammals because of the lack of apparent RAD5 homologues. We report that a putative tumor suppressor gene, SHPRH, is a human orthologue of yeast RAD5. SHPRH associates with PCNA, RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and promotes methyl methanesulfonate (MMS)-induced PCNA polyubiquitination. The reduction of SHPRH by stable short hairpin RNA increases sensitivity to MMS and enhances genomic instability. Therefore, the yRad5/SHPRH-dependent pathway is a conserved and fundamental DNA repair mechanism that protects the genome from genotoxic stress.  相似文献   

11.
Proliferating cell nuclear antigen (PCNA) is a DNA polymerase cofactor and regulator of replication-linked functions. Upon DNA damage, yeast and vertebrate PCNA is modified at the conserved lysine K164 by ubiquitin, which mediates error-prone replication across lesions via translesion polymerases. We investigated the role of PCNA ubiquitination in variants of the DT40 B cell line that are mutant in K164 of PCNA or in Rad18, which is involved in PCNA ubiquitination. Remarkably, the PCNAK164R mutation not only renders cells sensitive to DNA-damaging agents, but also strongly reduces activation induced deaminase-dependent single-nucleotide substitutions in the immunoglobulin light-chain locus. This is the first evidence, to our knowledge, that vertebrates exploit the PCNA-ubiquitin pathway for immunoglobulin hypermutation, most likely through the recruitment of error-prone DNA polymerases.  相似文献   

12.
Simpson LJ  Sale JE 《The EMBO journal》2003,22(7):1654-1664
The majority of DNA damage-induced mutagenesis in the yeast Saccharomyces cerevisiae arises as a result of translesion replication. This process is critically dependent on the deoxycytidyl transferase Rev1p, which forms a complex with the subunits of DNA polymerase zeta, Rev3p and Rev7p. To examine the role of Rev1 in vertebrate mutagenesis and the DNA damage response, we disrupted the gene in DT40 cells. Rev1-deficient DT40 grow slowly and are sensitive to a wide range of DNA-damaging agents. Homologous recombination repair is likely to be intact as basal and damage induced sister chromatid exchange and immunoglobulin gene conversion are unaffected. How ever, the mutant cells show a markedly reduced level of non-templated immunoglobulin gene mutation, indicating a defect in translesion bypass. Furthermore, ultraviolet exposure results in marked chromosome breakage, suggesting that replication gaps created in the absence of Rev1 cannot be efficiently repaired by recombination. Thus, Rev1-dependent translesion bypass and mutagenesis is likely to be a trade-off for the ability to complete replication of a damaged template and thereby maintain genome integrity.  相似文献   

13.
The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.  相似文献   

14.
Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively. Here we show that replication factor C (RFC; a heteropentameric protein complex that loads PCNA onto DNA) was also ubiquitylated in a RAD18-dependent manner in cells treated with alkylating agents or H(2)O(2). A mutant form of RFC2 with a D228A substitution (corresponding to a yeast Rfc4 mutation that reduces an interaction with replication protein A (RPA), a single-stranded DNA-binding protein) was heavily ubiquitylated in cells even in the absence of DNA damage. Furthermore RFC2 was ubiquitylated by the RAD6-RAD18 complex in vitro, and its modification was inhibited in the presence of RPA. The inhibitory effect of RPA on RFC2 ubiquitylation was relatively specific because RAD6-RAD18-mediated ubiquitylation of PCNA was RPA-insensitive. Our findings suggest that RPA plays a regulatory role in DNA damage responses via repression of RFC2 ubiquitylation in human cells.  相似文献   

15.
Translesion DNA synthesis, a process orchestrated by monoubiquitinated PCNA, is critical for DNA damage tolerance. While the ubiquitin-conjugating enzyme RAD6 and ubiquitin ligase RAD18 are known to monoubiquitinate PCNA, how they are regulated by DNA damage is not fully understood. We show that NBS1 (mutated in Nijmegen breakage syndrome) binds to RAD18 after UV irradiation and mediates the recruitment of RAD18 to sites of DNA damage. Disruption of NBS1 abolished RAD18-dependent PCNA ubiquitination and Polη focus formation, leading to elevated UV sensitivity and mutation. Unexpectedly, the RAD18-interacting domain of NBS1, which was mapped to its C terminus, shares structural and functional similarity with the RAD18-interacting domain of RAD6. These domains of NBS1 and RAD6 allow the two proteins to interact with RAD18 homodimers simultaneously and are crucial for Polη-dependent UV tolerance. Thus, in addition to chromosomal break repair, NBS1 plays a key role in translesion DNA synthesis.  相似文献   

16.
The Saccharomyces cerevisiae genes RAD5, RAD18, and SRS2 are proposed to act in post-replicational repair of DNA damage. We have investigated the genetic interactions between mutations in these genes with respect to cell survival and ectopic gene conversion following treatment of logarithmic and early stationary cells with UV- and gamma-rays. We find that the genetic interaction between the rad5 and rad18 mutations depends on DNA damage type and position in the cell cycle at the time of treatment. Inactivation of SRS2 suppresses damage sensitivity both in rad5 and rad18 mutants, but only when treated in logarithmic phase. When irradiated in stationary phase, the srs2 mutation enhances the sensitivity of rad5 mutants, whereas it has no effect on rad18 mutants. Irrespective of the growth phase, the srs2 mutation reduces the frequency of damage-induced ectopic gene conversion in rad5 and rad18 mutants. In addition, we find that srs2 mutants exhibit reduced spontaneous and UV-induced sister chromatid recombination (SCR), whereas rad5 and rad18 mutants are proficient for SCR. We propose a model in which the Srs2 protein has pro-recombinogenic or anti-recombinogenic activity, depending on the context of the DNA damage.  相似文献   

17.
Mms2, in concert with Ubc13 and Rad5, is responsible for polyubiquitination of replication processivity factor PCNA. This modification activates recombination-like DNA damage-avoidance mechanisms, which function in an error-free manner. Cells deprived of Mms2, Ubc13 or Rad5 exhibit mutator phenotypes as a result of the channelling of premutational DNA lesions to often error-prone translesion DNA synthesis (TLS). Here we show that Siz1-mediated PCNA SUMOylation is required for the stimulation of this TLS, despite the presence of PCNA monoubiquitination. The stimulation of spontaneous mutagenesis by Siz1 in cells carrying rad5 and/or mms2 mutations is connected with the known role of PCNA SUMOylation in the inhibition of Rad52-mediated recombination. However, following UV irradiation, Siz1 is engaged in additional, as yet undefined, mechanisms controlling genetic stability at the replication fork. We also demonstrate that in the absence of PCNA SUMOylation, Mms2-Ubc13 and Rad5 may, independently of each other, function in the stimulation of TLS. Based on this finding and on an analysis of the epistatic relationships between SIZ1, MMS2 and RAD5, with respect to UV sensitivity, we conclude that PCNA SUMOylation is responsible for the functional differences between the Mms2 and Rad5 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe.  相似文献   

18.
Pessoa-Brandão L  Sclafani RA 《Genetics》2004,167(4):1597-1610
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.  相似文献   

19.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.  相似文献   

20.
The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号