首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

2.
cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.  相似文献   

3.
CD38 is a 46-kDa type II transmembrane glycoprotein that catalyses the synthesis of cyclic ADP-ribose (cADPR) from NAD+. cADPR is a second messenger known to regulate intracellular Ca2+-induced Ca2+-release (CICR). A recent study has revealed that CD38 in Namalwa B cells undergoes internalization upon exposure to external NAD+. In this study, recombinant rat CD38 was expressed in Chinese hamster ovary (CHO) cells and the possibility of the protein to undergo internalization upon exposure to a substrate analog NADP+ was examined. It was found that such treatment of CHO cells resulted in a decrease of ADP-ribosyl cyclase activity, as well as immunofluorescence of CD38 on the cell surface. The same treatment of CHO cells also resulted in intracellular clustering of CD38 molecules as revealed by confocal microscopic analysis. The internalized CD38 was purified using a streptavidin/biotin-based method and was found to exhibit both ADP-ribosyl cyclase and cADPR hydrolase activities. On immunoblot, the internalized CD38 appeared as a monomer of 46 kDa under reducing condition of SDS-PAGE. Our data demonstrate that NADP+ can efficiently induce internalization of CD38, a process that may be important in the production of cADPR intracellularly to regulate CICR.  相似文献   

4.
H C Lee 《Biological chemistry》1999,380(7-8):785-793
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize Ca2+ from two different types of intracellular stores and through completely independent mechanisms. The two Ca2+ messengers are also structurally distinct. cADPR is a cyclic nucleotide derived from NAD, while NAADP is a linear metabolite of NADP. Systems responsive to these two novel signaling molecules are widespread among eukaryotes and include protozoan, plant, invertebrate, mammalian as well as human cells. Despite their functional and structural differences, cADPR and NAADP are sibling messengers synthesized by a single enzyme, ADP-ribosyl cyclase. In this article the recent progress in understanding the physiological roles of cADPR and NAADP is briefly reviewed. A unified mechanism of catalysis is also proposed, which takes into consideration the crystallographic structure of ADP-ribosyl cyclase and accounts for its novel multi-functionality.  相似文献   

5.
Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes that are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change, we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products (i.e., a value larger than observed for other members of this family such as CD38). Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provides new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge, however, in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR.  相似文献   

6.
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols.  相似文献   

7.
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control.  相似文献   

8.
Zielinska W  Barata H  Chini EN 《Life sciences》2004,74(14):1781-1790
CD38, a bifunctional enzyme capable of both synthesis and hydrolysis of the second messenger cyclic ADP-ribose (cADPR). Using the natural substrate of the enzyme, NAD+, the ratio of ADP-ribosyl cyclase/NAD glycohydrolase of CD38 is about 1/100. Here we describe that human seminal fluid contain a soluble CD38 like enzyme with an apparent M.W. of 49 kDa. When purified this enzyme has a cyclase/NAD glycohydrolase ratio of about 1/120. However, the in situ cyclase/NAD glycohydrolase ratio measured in seminal plasma approaches 1/1. We also found that physiological concentrations of zinc present in the seminal fluid, in the range of 0.6 to 4 mM, are responsible for the modulation of the cyclase/NAD glycohydrolase ratio. This new information indicates that the cyclase/NAD glycohydrolase ratio can be modified in vivo.  相似文献   

9.
ADP-ribosyl cyclases are structurally conserved enzymes that are best known for catalyzing the production of the calcium-mobilizing metabolite, cyclic adenosine diphosphate ribose (cADPR), from nicotinamide adenine dinucleotide (NAD(+)). However, these enzymes also produce adenosine diphosphate ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP(+)), both of which have been shown to modulate calcium mobilization in vitro. We have now characterized a new member of the cyclase family from Schistosoma mansoni, a member of the Platyhelminthes phylum. We show that the novel NAD(P)(+) catabolizing enzyme (NACE) expressed by schistosomes is structurally most closely related to the cyclases cloned from Aplysia but also shows significant homology with the mammalian cyclases, CD38 and CD157. NACE expression is developmentally regulated in schistosomes, and the GPI-anchored protein is localized to the outer tegument of the adult schistosome. Importantly, NACE, like all members of the cyclase family, is a multifunctional enzyme and catalyzes NAD(+) glycohydrolase and base-exchange reactions to produce ADPR and NAADP(+). However, despite being competent to generate a cyclic product from NGD(+), a nonphysiologic surrogate substrate, NACE is so far the only enzyme in the cyclase family that is unable to produce significant amounts of cADPR (<0.02% of reaction products) using NAD(+) as the substrate. This suggests that the other calcium-mobilizing metabolites produced by NACE may be more important for calcium signaling in schistosomes. Alternatively, the function of NACE may be to catabolize extracellular NAD(+) to prevent its use by host enzymes that utilize this source of NAD(+) to facilitate immune responses.  相似文献   

10.
Human CD38 is a multifunctional protein involved in diverse functions. As an enzyme, it is responsible for the synthesis of two Ca2+ messengers, cADPR and NAADP; as an antigen, it is involved in regulating cell adhesion, differentiation, and proliferation. Besides, CD38 is a marker of progression of HIV-1 infection and a negative prognostic marker of B-CLL. We have determined the crystal structure of the soluble extracellular domain of human CD38 to 1.9 A resolution. The enzyme's overall topology is similar to the related proteins CD157 and the Aplysia ADP-ribosyl cyclase, except with large structural changes at the two termini. The extended positively charged N terminus has lateral associations with the other CD38 molecule in the crystallographic asymmetric unit. The analysis of the CD38 substrate binding models revealed two key residues that may be critical in controlling CD38's multifunctionality of NAD hydrolysis, ADP-ribosyl cyclase, and cADPR hydrolysis activities.  相似文献   

11.
Cyclic ADP-ribose, a metabolite of NAD+, is known to modulate intracellular calcium levels and signaling in various cell types, including neural cells. The enzymes responsible for producing cyclic ADP-ribose in the cytoplasm of mammalian cells remain unknown; however, two mammalian enzymes that are capable of producing cyclic ADP-ribose extracellularly have been identified, CD38 and CD157. The present study investigated whether an ADP-ribosyl cyclase/NAD+-glycohydrolase independent of CD38 is present in brain tissue. To address this question, NAD+ metabolizing activities were accurately examined in developing and adult Cd38-/- mouse brain protein extracts and cells. Low ADP-ribosyl cyclase and NAD+-glycohydrolase activities (in the range of pmol of product formed/mg of protein/min) were detected in Cd38-/- brain at all developmental stages studied. Both activities were found to be associated with cell membranes. The activities were significantly higher in Triton X-100-treated neural cells compared with intact cells, suggesting an intracellular location of the novel cyclase. The cyclase and glycohydrolase activities were optimal at pH 6.0 and were inhibited by zinc, properties which are distinct from those of CD157. Both activities were enhanced by guanosine 5'-O-(3-thiotriphosphate), a result suggesting that the novel enzyme may be regulated by a G protein-dependent mechanism. Altogether our results indicate the presence of an intracellular membrane-bound ADP-ribosyl cyclase/NAD+-glycohydrolase distinct from CD38 and from CD157 in mouse brain. This novel enzyme, which is more active in the developing brain than in the adult tissue, may play an important role in cyclic ADP-ribose-mediated calcium signaling during brain development as well as in adult tissue.  相似文献   

12.
ADP-ribosyl cyclases catalyze the transformation of nicotinamide adenine dinucleotide (NAD+) into the calcium-mobilizing nucleotide second messenger cyclic adenosine diphosphoribose (cADP-ribose) by adenine N1-cyclization onto the C-1' ' position of NAD+. The invertebrate Aplysia californica ADP-ribosyl cyclase is unusual among this family of enzymes by acting exclusively as a cyclase, whereas the other members, such as CD38 and CD157, also act as NAD+ glycohydrolases, following a partitioning kinetic mechanism. To explore the intramolecular cyclization reaction, the novel nicotinamide 2-fluoroadenine dinucleotide (2-fluoro-NAD+) was designed as a sterically very close analogue to the natural substrate NAD+, with only an electronic perturbation at the critical N1 position of the adenine base designed to impede the cyclization reaction. 2-Fluoro-NAD+ was synthesized in high yield via Lewis acid catalyzed activation of the phosphoromorpholidate derivative of 2-fluoroadenosine 5'-monophosphate and coupling with nicotinamide 5'-monophosphate. With 2-fluoro-NAD+ as substrate, A. californica ADP-ribosyl cyclase exhibited exclusively a NAD+ glycohydrolase activity, catalyzing its hydrolytic transformation into 2-fluoro-ADP-ribose, albeit at a rate ca. 100-fold slower than for the cyclization of NAD+ and also, in the presence of methanol, into its methanolysis product beta-1' '-O-methyl 2-fluoro-ADP-ribose with a preference for methanolysis over hydrolysis of ca. 100:1. CD38 likely converted 2-fluoro-NAD+ exclusively into the same product. We conclude that A. californica ADP-ribosyl cyclase can indeed be classified as a multifunctional enzyme that also exhibits a classical NAD+ glycohydrolase function. This alternative pathway that remains, however, kinetically cryptic when using NAD+ as substrate can be unmasked with a dinucleotide analogue whose conversion into the cyclic derivative is blocked. 2-Fluoro-NAD+ is therefore a useful molecular tool allowing dissection of the kinetic scheme for this enzyme.  相似文献   

13.
Cyclic ADP-ribose (cADPR), synthesized by CD38, regulates intracellular calcium in uterine smooth muscle. CD38 is a transmembrane protein that has both ADP-ribosyl cyclase and cADPR hydrolase enzyme activities involved in cADPR metabolism. CD38 expression and its enzyme activities in uterine smooth muscle are regulated by estrogen. In the present study, we examined CD38 expression, its enzyme activities, and cADPR levels in myometrium obtained from rats at 14-17 days of gestation (preterm) and at parturition (term). CD38 expression, ADP-ribosyl cyclase activity, and cADPR levels were higher in uterine tissues obtained from term rats compared with that of preterm rats, while activity of cADPR hydrolase did not significantly change. In an effort to address whether changes in estrogen: progesterone ratio that occur during pregnancy account for the observed effects on CD38 expression and function, we determined the effect of different doses of progesterone in the presence of estrogen on CD38 expression and its enzyme activities in uterine smooth muscle obtained from ovariectomized rats. In myometrium obtained from ovariectomized rats, estrogen administration caused increased CD38 protein expression and ADP-ribosyl cyclase activity. The estrogen-induced increases in CD38 expression and ADP-ribosyl cyclase activity were inhibited by simultaneous administration of 10 or 20 mg of progesterone. These results indicate that the estrogen:progesterone ratio determines CD38 expression and ADP-ribosyl cyclase activity. These changes in CD38/cADPR pathway may contribute to increased uterine motility and onset of labor.  相似文献   

14.
The objective of this brief review is to present an overview of the bioorganic chemistry of cyclic-ADP-ribose (cADPR) with special emphasis on the methodology used for the synthesis of analogues of cADPR. New structural analogues of cADPR can be prepared using either the biomimetic method or ADP-ribosyl cyclase from Aplysia californica. For the most part, both procedures give similar product profiles, but higher yields are generally obtained with the enzymatic method. These synthetic methodologies have allowed the transformation of a variety of structurally modified analogues of NAD+ into their corresponding cyclic nucleotides. Several of these novel analogues are more potent than cADPR in inducing calcium release and are also more stable towards degradative enzymes. They could serve as valuable affinity probes for the isolation of cADPR-binding proteins.  相似文献   

15.
ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.  相似文献   

16.
Cyclic ADP-ribose (cADPR), a known endogenous modulator of ryanodine receptor Ca2+ releasing channels, is found in the nervous system. Injection of cADPR into neuronal cells primarily induces a transient elevation of intracellular Ca2+ concentration ([Ca2+]i), and/or secondarily potentiates [Ca2+]i increases that are the result of depolarization-induced Ca2+ influx. Acetylcholine release from cholinergic neurons is facilitated by cADPR. cADPR modifies K+ currents or elicits Ca2+-dependent inward currents. cADPR is synthesized by both membrane-bound and cytosolic forms of ADP-ribosyl cyclase in neuronal cells. cADPR hydrolase activity is weak in the membrane fraction, but high in the cytoplasm. Cytosolic ADP-ribosyl cyclase activity is upregulated by nitric oxide/cyclic GMP-dependent phosphorylation. Stimulation of muscarinic and beta-adrenergic receptors activates membrane-bound ADP-ribosyl cyclase via G proteins within membranes of neuronal tumor cells and cortical astrocytes. These findings strongly suggest that cADPR is a second messenger in Ca2+ signaling in the nervous system, although many intriguing issues remain to be addressed before this identity is confirmed.  相似文献   

17.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

18.
Recent studies have provided evidence for a role of cyclic ADP-ribose (cADPR) in the regulation of intracellular calcium in smooth muscles of the intestine, blood vessels and airways. We investigated the presence and subcellular localization of ADP-ribosyl cyclase, the enzyme that catalyzes the conversion of beta-NAD(+) to cADPR, and cADPR hydrolase, the enzyme that degrades cADPR to ADPR, in tracheal smooth muscle (TSM). Sucrose density fractionation of TSM crude membranes provided evidence that ADP-ribosyl cyclase and cADPR hydrolase activities were associated with a fraction enriched in 5'-nucleotidase activity, a plasma membrane marker enzyme, but not in a fraction enriched in either sarcoplasmic endoplasmic reticulum calcium ATPase or ryanodine receptor channels, both sarcoplasmic reticulum markers. The ADP-ribosyl cyclase and cADPR hydrolase activities comigrated at a molecular weight of approximately 40 kDa on SDS-PAGE. This comigration was confirmed by gel filtration chromatography. Investigation of kinetics yielded K(m) values of 30.4+/-1.5 and 695. 3+/-171.2 microM and V(max) values of 330.4+/-90 and 102.8+/-17.1 nmol/mg/h for ADP-ribosyl cyclase and cADPR hydrolase, respectively. These results suggest a possible role for cADPR as an endogenous modulator of [Ca(2+)](i) in porcine TSM cells.  相似文献   

19.
beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.  相似文献   

20.
CD38 is a bifunctional ectoenzyme predominantly expressed on hematopoietic cells where its expression correlates with differentiation and proliferation. The two enzyme activities displayed by CD38 are an ADP-ribosyl cyclase and a cyclic adenosine diphosphate ribose (cADPR) hydrolase that catalyzes the synthesis and hydrolysis of cADPR. T lymphocytes can be induced to express CD38 when activated with antibodies against specific antigen receptors. If the activated T cells are then exposed with NAD, cell death by apoptosis occurs. During the exposure of activated T cells to NAD, the CD38 is modified by ecto-mono-ADP-ribosyltransferases (ecto-mono-ADPRTs) specific for cysteine and arginine residues. Arginine-ADP-ribosylation results in inactivation of both cyclase and hydrolase activities of CD38, whereas cysteine-ADP-ribosylation results only in the inhibition of the hydrolase activity. The arginine-ADP-ribosylation causes a decrease in intracellular cADPR and a subsequent decrease in Ca(2+) influx, resulting in apoptosis of the activated T cells. Our results suggest that the interaction of two classes of ecto-ADP-ribose transfer enzymes plays an important role in immune regulation by the selective induction of apoptosis in activated T cells and that cADPR mediated signaling is essential for the survival of activated T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号