首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytochrome b6-f complex from spinach thylakoids has been reconstituted with an oxygen-evolving Photosystem II (PSII) preparation isolated from the same source to give oxygenic plastocyanin reductase activity. We observe that (i) mixing of the two complexes in concentrated form prior to dilution with the assay medium is necessary for optimal reconstitution of activity; (ii) incubation for longer times after dilution can also give substantial reconstitution if the two complexes are added separately to the assay mixture; (iii) either monovalent or divalent cations are required for optimum activity in the reconstituted system; (iv) titration of the cytochrome complex with varying amounts of the PSII complex gave a saturation of the plastocyanin reduction activity at a cytochrome complex/PSII ratio of 3-4; (v) kinetic analysis of plastocyanin photoreduction by Photosystem II shows nonlinearity, while first-order reduction kinetics are observed with duroquinol as electron donor; and (vi) as the concentration of plastocyanin is increased, the half-time of the reduction increases. These observations are considered in terms of a functional association between PSII and the cytochrome b6-f complex in this reconstituted system, and the relevance of these observations to the situation in vivo is discussed.  相似文献   

2.
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DGD digalactosyldiacylglycerol - LHCP light-harvesting chlorophyll-protein - MGD monogalactosyldiacylglycerol - PCi phosphatidylcholine — Sigma grade NS - PCii -oleoyl, -palmitoyl phosphalidylcholine - PG phosphatidylglycerol - PSI photosystem I - PSII photosystem II  相似文献   

3.
The search was made for theoretical confirmation of hypothesis that mechanism of cisplatin cytotoxicity is based on dissociative electron transfer (ET) processes. Applying quantum chemical calculations based on supermolecular approach, the reactions mimicking presumed steps of cisplatin activation were evaluated. The electronic structure of model systems: cis- and transplatin with free electrons, hydrated electrons, and water, was studied by using density functional (DFT) within the Huzinaga basis set and GAUSSIAN-09 package. The respective energy was evaluated with the use of B3LYP density hybrid functional. The calculations were performed for gas phase and water solution; the solvent effects were studied by using the polarizable continuum model. Analysis of the energetic and structural parameters of cisplatin vs. transplatin behavior in the model systems leads to conclusion: there are two possible ways of cisplatin biotransformation, hydrolysis and hydrated electron impact, dependent on the medium redox state.  相似文献   

4.
Interactions between polynucleotides and platinum (II) complexes   总被引:1,自引:0,他引:1  
Reaction of either cis or trans Pt(NH3)2Cl2 with poly(A) in dilute aqueous solution leads to quantitative precipitation of the polymer at Pt/nucleotide ratios above 0.5. It is proposed that at ratios less than this, intramolecular binding of one Pt to two bases is favored; at higher ratios, intermolecular cross-linking becomes important and precipitation results. The absence of isomer selectivity in precipitation implies that the biological specificity of the cis form results from a process other than cross-linking of polynucleotide strands. Other observations suggest that the coordinated ammonia of nucleotide-platinum(II) ammine complexes may be unusually labile.  相似文献   

5.
Interactions between folate derivatives and palladium(II) complexes are monitored in 1 : 1 molar ratio mixtures by circular dichroic spectra. The results are consistent with the following conclusions, i.e., tetrahydrofolate forms a chelate complex with palladium(II) through nitrogens 5 and 10 which is characterized by a unique circular dichroic spectrum. Mixtures of pallodium (II) complexes and dihydrofolate on methylenetetrahydrofolate could not be expected to, nor do they, give rise to similar circualr dichroic spectra for the following reasons: (1) The N5, N10 chelation site of tetrahydrofolate is blocked in methylenetetrahydrofolate, so coordination of a palladium(II) species must occur at some secondary site. (2) The N5, N10 chelation site is available but carbon six of the pteridine ring system is no longer asymmetric in dihydrofolate. Mixtures of dihdrofolate and palladium(II) complexes have no measurable circular dichroic spectra under the experimental conditions used.  相似文献   

6.
The rate constants for the oxidation of some 1,10- phenanthroline and 2,2’-bipyridine complexes of iron(II) by cerium(IV) in nitrate media are reported. In the acidity range investigated (0.05–2.0 M), the predominant reactive species is Ce4+, although CeOH3+ also contributes to the reaction progress.The results are shown to be consistent with the Marcus theory for outer-sphere electron transfer reactions, and the intrinsic parameter for Ce4+/3+ couple was estimated.  相似文献   

7.
The mechanisms of targeting, insertion and assembly of the chloroplast-encoded thylakoid membrane proteins are unknown. In this study, we investigated these mechanisms for the chloroplast-encoded polytopic D1 thylakoid membrane protein, using a homologous translation system isolated from tobacco chloroplasts. Truncated forms of the psbA gene were translated and stable ribosome nascent chain complexes were purified. To probe the interactions with the soluble components of the targeting machinery, we used UV-activatable cross-linkers incorporated at specific positions in the nascent chains, as well as conventional sulfhydryl cross-linkers. With both cross-linking approaches, the D1 ribosome nascent chain was photocross-linked to cpSRP54. cpSRP54 was shown to interact only when the D1 nascent chain was still attached to the ribosome. The interaction was strongly dependent on the length of the nascent chain that emerged from the ribosome, as well as the cross-link position. No interactions with soluble SecA or cpSRP43 were found. These results imply a role for cpSRP54 in D1 biogenesis.  相似文献   

8.
Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi(3+) binds strongly to metallothionein with a stoichiometry bismuth:MT = 7:1 (Bi(7)MT) and can readily displace Zn(2+) and Cd(2+). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)](-), and both exhibit biphasic kinetics. (1)H NMR data show that Zn(2+) is displaced faster than Cd(2+), and that both Zn(2+) and Cd(2+) in the beta-domain (three metal cluster) of MT are displaced by Bi(3+) much faster than from the alpha-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi(7)MT is very similar to that for the glutathione and N-acetyl-L-cysteine complexes [Bi(GS)(3)] and [Bi(NAC)(3)] with an inner coordination sphere of three sulfur atoms and average Bi-S distances of 2.55 A. Some sites appear to contain additional short Bi-O bonds of 2.2 A and longer Bi-S bonds of 3.1 A. The Bi(3+) sites in Bi(7)MT are therefore highly distorted in comparison with those of Zn(2+) and Cd(2+).  相似文献   

9.
Electron microscope technique was used to investigate the passage across the endothelial monolayer by murine tumor lines. After the initial adhesion, cancer cells induce a retraction of endothelium and migrate under vascular intima. Subsequently they spread on basement membrane showing a flattened shape, meanwhile endothelial cells reconstitute the monolayer. The four tumor lines show a similar behaviour being able to induce endothelial retraction and exposure of extracellular matrix and cross through the monolayer. The technique appears useful to study in details this multi-step process.  相似文献   

10.
Bashir Q  Scanu S  Ubbink M 《The FEBS journal》2011,278(9):1391-1400
Electron transfer proteins transport electrons safely between large redox enzymes. The complexes formed by these proteins are among the most transient. The biological function requires, on the one hand, sufficient specificity of the interaction to allow for rapid and selective electron transfer, and, on the other hand, a fast turnover of the complex. Recent progress in the characterization of the nature of these complexes has demonstrated that the encounter state plays an important role. This state of initial binding is dominated by electrostatic interactions, and consists of an ensemble of orientations. Paramagnetic relaxation enhancement NMR and chemical shift perturbation analysis provide ways for the experimental characterisation of the encounter state. Several studies that have used these techniques have shown that the surface area sample in the encounter state can be limited to the immediate environment of the final, specific complex. The encounter complex can represent a large fraction and, in some small complexes, no specific binding is detected at all. It can be concluded that, in electron transfer protein complexes, a fine balance is sought between the low-specificity encounter state and the high-specificity productive complex to meet the opposing requirements of rapid electron transfer and a high turnover rate.  相似文献   

11.
We have measured light-induced voltage changes (electrogenic events) in photosystem II (PSII) core complexes oriented in phospholipid monolayers. These events are compared to those measured in the functionally and structurally closely related reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides. In both systems we observed a rapid (< 100 ns) light-induced increase in voltage associated with charge separation. In PSII reaction centers it was followed by a decrease (decay) of approximately 14% of the charge-separation voltage and a time constant of approximately 500 microseconds. In bacterial reaction centers this decay was approximately 9% of the charge-separation voltage, and the time constant was approximately 200 microseconds. The decay was presumably associated with a structural change. In bacterial reaction centers, in the presence of excess water-soluble cytochrome c2+, it was followed by a slower increase of approximately 30% of the charge-separation voltage, associated with electron transfer from the cytochrome to the oxidized donor, P+. In PSII reaction centers, after the decay the voltage remained on the same level for > or = 0.5 s. In PSII reaction centers the electron transfer Q-AQB-->QA Q-B contributed with an electrogenicity of < or = 5% of that of the charge separation. In bacterial reaction centers this electrogenicity was < or = 2% of the charge-separation electrogenicity. Proton transfer to Q2-B in PSII reaction centers contributed with approximately 5% of the charge-separation voltage, which is approximately a factor of three smaller than that observed in bacterial reaction centers.  相似文献   

12.
13.
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.  相似文献   

14.
The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2–7 μs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA? and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ → P680+ electron transfer in about half of the PS II population, wherein the recombination between QA? and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the “water replacement” hypothesis of trehalose matrix biopreservation.  相似文献   

15.
The ability of various native and modified cytochromes c to transfer electrons to cytochrome oxidase is compared in cytochrome c depleted beef heart mitochondrial particles. The kinetics are followed at -49 degrees C after the reaction is initiated by photolysis of the CO compound of cytochrome oxidase in the presence of oxygen. Horse, human, yeast iso-2, and carboxydinitrophenyl (CDNP)-lysine-60 horse cytochromes c all give initial rates of electron transfer that are equal to those observed in whole beef mitochondria. Euglena, CDNP-lysine-72, and CDNP-lysine-13 horse cytochromes c give rates about one-tenth that of whole mitochondria. These rates were independent of the concentration of cytochrome c. Since the inhibited cytochromes c, but not the active proteins, had previously been shown to have lowered affinity for cytochrome oxidase, the results indicate that the structural characteristics important for the association of cytochrome c and oxidase are also essential for achieving normal rates of electron transfer within the complex once formed.  相似文献   

16.
Electron-transferring flavoproteins (ETFs) from human and Paracoccus denitrificans have been analyzed by small angle x-ray scattering, showing that neither molecule exists in a rigid conformation in solution. Both ETFs sample a range of conformations corresponding to a large rotation of domain II with respect to domains I and III. A model of the human ETF.medium chain acyl-CoA dehydrogenase complex, consistent with x-ray scattering data, indicates that optimal electron transfer requires domain II of ETF to rotate by approximately 30 to 50 degrees toward domain I relative to its position in the x-ray structure. Domain motion establishes a new "robust engineering principle" for electron transfer complexes, tolerating multiple configurations of the complex while retaining efficient electron transfer.  相似文献   

17.
Oxido-pincer ligands with phenolate-groups [2,6-bis(2-methoxyphenyl)pyridine (LOMe2), 2,6-bis(2-hydroxyphenyl)-pyridine (LOH2), 2,6-bis-(2,4-dimethoxyphenyl)-pyridine (LOMe4)] coordinate to CuII forming binuclear complexes which can be easily and reliably converted into mononuclear species. Their physical properties were analysed using EPR, optical spectroscopy and (spectro-)electrochemical methods. The results were compared to those of related NiII complexes and discussed in view of Cu-containing metalloenzymes. Due to the ligands flexibility the CuII/CuI redox couple exhibits high reversibility, while the ligand-centred oxidation leads to highly reactive phenoxy radicals. Reduction of the LOH2 complex leads to sequential deprotonation. The ligand LOMe4 and the derived complexes show blue luminescence, which can be rationalised from its molecular structure (analysed by XRD).  相似文献   

18.
The enzymology of isolated succinate: ubiquinone reductase and ubiquinone: cytochrome c reductase in nonionic detergents (alkyl polyoxyethylene derivatives) was studied. In the membrane the two multiprotein complexes and their hydrophobic substrates ubiquinone and dihydroubiquinone, are embedded in a common lipid bilayer. In detergent solutions the complexes are each inserted into micelles. Detergent micelles also serve as a solvent for the complexes hydrophobic substrates. As a consequence the isolated complexes are in a discontinuous phase with respect to their hydrophobic substrates and with respect to each other. Three types of assays were used. Firstly, single enzyme assays in which the hydrophobic substrates had to transfer from free micelles to the complex-bound micelles in order for enzyme reactions to occur. Secondly, assays in which the enzymic reactions were coupled to auxiliary nonenzymic reactions which rapidly converted the hydrophobic products back into substrates within the complex-bound micelle. Dichloroindophenol was used for the oxidation of dihydroubiquinone and dihydroduroquinone for the reduction of ubiquinone. Thirdly, assays in which the succinate: ubiquinone reductase reaction was coupled with the ubiquinone: cytochrome c reductase reaction. With the first type of assay, the kinetics of the substrate transfer reaction was dependent upon the type of detergent. In detergents with small polyoxyethylene head groups the transfer reactions were rate-limiting, and in detergents with large polyoxyethylene head groups the transfer reactions were fast and the enzymic reactions were rate-limiting...  相似文献   

19.
20.
Yu L  Hua X  Pan Q  Yang L  Xu Y  Zhao G  Wang H  Wang H  Wu J  Liu K  Chen J 《Carbohydrate research》2011,346(14):2278-2284
Two complexes of neutral D-galactitol (C(6)H(14)O(6), G) with terbium nitrate, TbGN(I) and TbGN(II), and one complex with samarium nitrate SmGN were synthesized and characterized. From IR, FIR, THz and luminescence spectra the possible coordinations were suggested, and the single-crystal X-ray diffraction results confirm the spectroscopic conclusions. In TbGN(I) (Tb(NO(3))(3)·C(6)H(14)O(6)·3H(2)O), the Tb(3+) is 9-coordinated with three water molecules and six OH groups from two D-galactitol molecules. Nitrate ions do not coordinate to metal ions, which is different from other reported lanthanide nitrate-D-galactitol complexes. In TbGN(II) and SmGN (Ln(NO(3))(3)·C(6)H(14)O(6)), Ln(3+) is 10-coordinated with six OH groups from two D-galactitol molecules and four oxygen from two bidentate nitrate ions, and one nitrate ion is hydrogen bonded. No water exists in the structures. D-Galactitol molecules provide their 1-, 2- and 3-hydroxyl groups to coordinate with one metal ion and their 4-, 5- and 6-hydroxyl groups to coordinate with another metal ion in the three structures. There is still a new topological structure that can be observed for lanthanide-d-galactitol complexes, which indicates that the coordinations between hydroxyl groups and metal ions are complicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号