首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison is made of the ultrastructure of the cell periphery in three cloned cell lines: untransformed Balb/c 3T3 cells, SV40-transformed Balb/c 3T3 cells, and revertant cells obtained from the transformed cell line by a selection technique utilizing concanavalin A. Both thin-section and surface replication techniques are used for in situ examination of the cell lines. Microfilaments, 70 Å in diameter (called alpha filaments), are abundant in untransformed and revertant cell lines, particularly in the anterior expansions of the cells, which tend to have many microvilli and small pseudopodia. Alpha filaments are diminished in the anterior expansions of transformed cells, which contain large blunt pseudopodia and relatively few microvilli. Surface replicas confirm the impression gained from thin sections that transformed cells have a greater proportion of their cell surface involved in bulging pseudopodia than either untransformed or revertant cells. Since alpha filaments are shown to bind heavy meromyosin and are similar to F-actin, these filaments are thought to be important in cell motility. These observations suggest that a close relationship exists between decreased alpha filaments, bulging pseudopodia, and loss of contact inhibition of movement in transformed cells.  相似文献   

2.
Our previous studies of glycosphingolipids (GSLs) of human umbilical vein endothelial cells (HUVECs) established that globoside and ganglioside GM3 are the most abundant GSLs of HUVECs. Both compounds are located intracellularly, as well as on the cell surface. In this study, we demonstrate that the intracellular globoside and GM3 antigens are associated with the vimentin intermediate filaments of the HUVEC cytoskeleton. Immunofluorescence staining of fixed, permeabilized HUVECs showed colocalization of globoside and GM3 with vimentin but not with tubulin or actin. Both GSLs remained associated with intermediate filaments after perinuclear collapse of the filaments induced by colcemid. Indirect evidence that the globoside epitope is present on a GSL is the loss of staining by anti-globoside after methanol fixation and the absence of anti-globoside reactivity with HUVEC proteins on immunoblots. Colocalization of anti-globoside and anti-vimentin was also demonstrated in cryosections of endothelial cells, which indicates that the observed association was not an artifact induced by exposure of cells to detergent or organic solvent. Association of globoside with intermediate filaments was confirmed by immunoelectron microscopy, which demonstrated the presence of antigen along intermediate filaments, as well as on the cell surface and on lipid vesicles. Interferon-gamma decreased the ratio of surface to filamentous globoside staining, but had the opposite effect on GM3 distribution. Less abundant HUVEC GSLs, including Gb3, nLc4, IV2FucnLc4, and IV3NeuAcnLc4, were not detected along filaments. This is the first report of the association of GSLs with intermediate filaments. We suggest that intermediate filaments may play a role in the transport of GSLs.  相似文献   

3.
Eukaryotic cells have highly organized, interconnected intracellular compartments. The nuclear surface and cytoplasmic cytoskeletal filaments represent compartments involved in such an association. Intermediate filaments are the major cytoskeletal elements in this association. Desmin is a muscle-specific structural protein and one of the earliest known muscle-specific genes to be expressed during cardiac and skeletal muscle development. Desmin filaments have been shown to be associated with the nuclear surface in the myogenic cell line C2C12. Previous studies have revealed that mice lacking desmin develop imperfect muscle, exhibiting the loss of nuclear shape and positioning. In the present work, we have analyzed the association between desmin filaments and the outer nuclear surface in nuclei isolated from pectoral skeletal muscle of chick embryos and in primary chick myogenic cell cultures by using immunofluorescence microscopy, negative staining, immunogold, and transmission electron microscopy. We show that desmin filaments remain firmly attached to the outer nuclear surface after the isolation of nuclei. Furthermore, positive localization of desmin persists after gentle washing of the nuclei with high ionic strength solutions. These data suggest that desmin intermediate filaments are stably and firmly connected to the outer nuclear surface in skeletal muscles cells in vivo and in vitro.  相似文献   

4.
The ultrastructural association of endothelial cells with the subjacent elastic lamina was investigated in the developing mouse aorta by electron microscopy. In the 5-day postnatal aorta, extensive filament bundles extend along the subendothelial matrix connecting the endothelial cells to the underlying elastic lamina. The connecting filaments form lateral associations with the abluminal surface of the endothelial cells in regions of membrane occupied by membrane-associated dense plaques. On the intracellular face of each plaque, the termini of stress fibers penetrate and anchor to the cell membrane in alignment with the extracellular connecting filaments. Both the stress fibers and the connecting filaments are oriented parallel to the longitudinal axis of the vessel. High magnification electron micrographs of individual endothelial cell connecting filaments reveal features similar to those of elastin-associated microfibrils. Each connecting filament consists of a 9–10 nm linear core with an electron-lucent center and peripheral spike-like projections. From the filaments, small thread-like extensions span laterally, linking the filaments into a loose bundle and anchoring them to the endothelial cell membrane and the surface of the elastic lamina. The filaments also appear heavily coated with electron-dense material; often with some degree of periodicity along the filament length. During development, the number of endothelial cell connecting filaments decreases as the elastic lamina expands and the subendothelial matrix is reduced. In the aortic intima of mature mice, the elastic lamina is closely apposed to the abluminal surface of the endothelial cell and no connecting filaments are seen. These observations suggest that endothelial cell connecting filaments are developmental features of the aortic intima which, together with the intracellular stress fibers, aid to maintain the structural integrity of the endothelial cell layer during development by providing the cells with protection from intraluminal shear forces.  相似文献   

5.
Superficial cells of the oral mucosal epithelium in the carp and the cytoskeleton of the epithelial cells are examined by scanning and transmission electron microscopy. Microridges are formed on the surface of the epithelium. Epithelial cells contain two types of vesicles: mucous secretory vesicles and coated vesicles. Most of the mucous vesicles are situated in the center of the cell near the Golgi apparatus. In freeze-fracture replicas, intramembranous particles are abundant in the membranes of the secretory vesicles but rare in the apical plasma membrane. Coated vesicles are situated in the apical and subapical cytoplasm. A great number of thick filaments, considered to be keratin filaments, run randomly throughout the cell to form a meshwork. Thick filaments, which are sparse in the central cytoplasm, are connected to the membranes of the secretory vesicles and other membranous organelles. A layer of closely packed thin filaments, considered to be actin filaments, is found just beneath the apical plasma membrane. Microtubules also occur in the apical cytoplasm and run almost parallel to the cell surface. Both kinds of vesicles are connected to the thin and thick filaments. Their functional significance in the regulation of membrane at the free surface is discussed.  相似文献   

6.
Variations in the gross morphology and surface architecture of the gill filaments and secondary lamellae of a freshwater catfish (Rita rita) have been investigated using scanning electron microscopy. Heterogeneity of the gill has been correlated with the distribution of lamellar water-flow at different regions of a gill filament. Higher lamellar water flow (cc/pore/cmH2O/sec) was estimated for the middle region of the filaments. The filaments are covered with epithelial cells whose surface is provided with well-developed microridges. The lamellae are generally covered with microvillous epithelial cells. The variations in surface architecture of the gill filaments and secondary lamellae have been correlated with their probable functions.  相似文献   

7.
Previously, whole-mount electron microscopy of nuclei extruded together with residual cytoplasm from the rhizoids of several algal species of the order Dasycladales has revealed the occurrence of an intra- and perinuclear network of 10-nm filaments morphologically indistinguishable from that of mammalian vimentin intermediate filaments. The present investigation demonstrates the existence of a filament system throughout the cytoplasm of the rhizoid, stalk, and apical tip of these giant cells. However, while the perinuclear 10-nm filaments interconnecting the nuclear surface with a perinuclear layer of large, electron-dense bodies filled with nucleoprotein material are of smooth appearance, those continuing within and beyond the perinuclear bodies are densely covered with differently sized, globular structures and, therefore, are of a very rough appearance. The filaments in the very apical tip of the cells are mainly of the smooth type. The transition from smooth to rough filaments seems to occur in the numerous perinuclear dense bodies surrounding the large nucleus. Digestion of the rough filaments with proteinase K removes the globules from the filament surface, revealing that throughout the nonvacuolar, intracellular space the filaments have the same basic 10-nm structure. On the other hand, gold-conjugated RNase A strongly binds to the filament-attached globules but not to the smooth, perinuclear, and the proteinase K-treated, rough filaments. In addition, an antibody raised against Xp54, a highly conserved protein which in Xenopus oocytes is an integral component of stored mRNP particles, decorates the rough but not the smooth 10-nm filaments. These results support the notion that the 10-nm filament system of Dasycladales cells plays a role in the transient storage of ribonucleoprotein particles in the cytoplasm and possibly fulfils a supportive function in the actomyosin-based transport of such material to various cytological destinations.  相似文献   

8.
Decidualization of the mouse endometrium consists of a redifferentiation of the endometrial stromal fibroblasts. During decidualization these fibroblasts undergo growth, change of shape, multinucleation, and establishment of intercellular junctions. One feature of rodent decidual cells is the accumulation of intermediate filaments. In spite of the fact that fibroblasts normally have vimentin intermediate filaments, they acquire a large amount of desmin intermediate filaments while they undergo decidualization. The light and electron microscope immunocytochemical results of the present work show that during the initial stages of decidual transformation the desmin intermediate filaments accumulate around the nuclei, often forming caps around the nuclear envelope. As the decidual cells grow, the filaments form bundles and nets that radiate from the nuclei toward the cell surface. During the final stages of differentiation, on day 8 of pregnancy, staining of differentiated decidual cells decreases and most filaments accumulate under the cell surface. A role for intermediate filaments is suggested for decidualization of mouse endometrial cells.  相似文献   

9.
In attached cells, the main part of filaments is localized in submembrane area, whereas suspension fibroblasts are situated deeper in the cytoplasm. Another difference involves the form of filament gatherings. In the former these are bundles stretched parallel to the cell surface, whereas in the latter these gatherings are in the form of loose balls near the nucleus. According to their diameter and type of cell localization the latter filaments are similar to intermediate ones. In suspension cells with caps formed by ligand treatment, gatherings of fibrillar elements are observed within the cytoplasm but these filaments are shorter and looser, being located in disorder. In addition, the increase in the number of electron dense granules of unknown nature is observed between these filaments. The above observations suggest that the surface processes may be associated with the inner parts of cytoskeleton.  相似文献   

10.
Filaments 5 nm thick, located throughout the cytoplasm mainly along the surface, are observed in intact lymphocytes. In the control glycerinized lymphocytes, besides the above filaments aggregations of filaments nearly 3 nm in diameter were found. After the treatment of cells by antimurine serum or ferritin-conjugated concanavalin A, some fibrillar structures are observed mainly in the cap region in the form of filaments 5-6 nm of thickness, radially directed towards the plasma membrane. After glycerinization, three types of filaments are observed being, respectively, near 3, 5-6 and almost 8 nm in diameter. Two latter types of filaments are decorated by S1-myosine fragments which indicates their actine nature. Differences in the character and distribution of myofibrils in the cytoplasm of intact cells and cells with caps may witness in favour of their involvement in the processes associated with redistribution of surface receptors.  相似文献   

11.
It is proposed that muscular contraction is the result of electrostatic attraction between oppositely charged areas on actin and myosin filaments. On the latter charged areas are assumed to be moving, always a step ahead of stationary charged areas on actin filaments, the moving charges pulling the stationary charges, hence the actin filaments, with them. It may be noted that electric motors in human technology work on a similar moving field principle. On myosin filaments minute charged areas are assumed to spiral along the surface of the filament on 2 or 3-start helical paths, probably the latter, thus engaging with adjacent actin filaments in a screw-like fashion. The spiralling charges follow each other like peristaltic waves, engaging with an increasing number of static fields on actin filaments as interdigitation proceeds. The source of the electrostatic charges are assumed to be minute voltaic cells, one associated with every myosin head. It is suggested that they could be calcium-magnesium cells, calcium adsorbed by troponin complexes on actin filaments constituting one electrode, and magnesium complexed with ATP on myosin filaments the other. The potential difference that has to exist between actin and myosin filaments, if muscles are to be capable of developing a maximum force of 20 N per cm2, is calculated at about 50 mV.  相似文献   

12.
BACKGROUND: Regulation of actin structures is instrumental in maintaining proper cytoarchitecture in many tissues. In the follicular epithelium of Drosophila ovaries, a system of actin filaments is coordinated across the basal surface of cells encircling the oocyte. These filaments have been postulated to regulate oocyte elongation; however, the molecular components that control this cytoskeletal array are not yet understood. RESULTS: We find that the receptor tyrosine phosphatase (RPTP) Dlar and integrins are involved in organizing basal actin filaments in follicle cells. Mutations in Dlar and the common beta-integrin subunit mys cause a failure in oocyte elongation, which is correlated with a loss of proper actin filament organization. Immunolocalization shows that early in oogenesis Dlar is polarized to membranes where filaments terminate but becomes generally distributed late in development, at which time beta-integrin and Enabled specifically associate with actin filament terminals. Rescue experiments point to the early period of polar Dlar localization as critical for its function. Furthermore, clonal analysis shows that loss of Dlar or mys influences actin filament polarity in wild-type cells that surround mutant tissues, suggesting that communication between neighboring cells regulates cytoskeletal organization. Finally, we find that two integrin alpha subunits encoded by mew and if are required for proper oocyte elongation, implying that multiple components of the ECM are instructive in coordinating actin fiber polarity. CONCLUSIONS: Dlar cooperates with integrins to coordinate actin filaments at the basal surface of the follicular epithelium. To our knowledge, this is the first direct demonstration of an RPTP's influence on the actin cytoskeleton.  相似文献   

13.
The current hypothesis of cytokinesis suggests that contractile forces in the cleavage furrow are generated by a circumferential band of actin filaments. However, relatively little is known about the global organization of actin filaments in dividing cells. To approach this problem we have used fluorescence-detected linear dichroism (FDLD) microscopy to measure filament orientation, and digital optical sectioning microscopy to perform three-dimensional reconstructions of dividing NRK cells stained with rhodamine-phalloidin. During metaphase, actin filaments in the equatorial region show a slight orientation along the spindle axis, while those in adjacent regions appear to be randomly distributed. Upon anaphase onset and through cytokinesis, the filaments become oriented along the equator in the furrow region, and along the spindle axis in adjacent regions. The degree of orientation appears to be dependent on cell-cell and cell-substrate adhesions. By performing digital optical sectioning microscopy on a highly spread NRK subclone, we show that actin filaments organize as a largely isotropic cortical meshwork in metaphase cells and convert into an anisotropic network shortly after anaphase onset, becoming more organized as cytokinesis proceeds. The conversion is most dramatic on the adhering ventral surface which shows little or no cleavage activity, and results in the formation of large bundles along the equator. On the dorsal surface, where cleavage occurs actively, actin filaments remain isotropic, showing only subtle alignment late in cytokinesis. In addition, stereo imaging has led to the discovery of a novel set of filaments that are associated with the cortex and traverse through the cytoplasm. Together, these studies provide important insights into the process of actin remodeling during cell division and point to possible additional mechanisms for force generation.  相似文献   

14.
Goldberg WM 《Tissue & cell》2002,34(4):246-261
Mycetophyllia reesi Wells is a colonial scleractinian coral whose outer surface consists of a series of oral-pharyngeal openings that lack tentacles. The polyps also lack a column and cannot protrude from the colonial surface. Correspondingly, there is no central digestive cavity. Instead, the pharynx is directly connected to a series of radially arranged mesenterial ducts lying parallel to the skeleton. The ducts, composed primarily of ciliated cells with small mucus inclusions and large, compartmentalized mucocytes, house filaments that protrude through the oral apertures during feeding. The filaments may or may not be directly connected with or originate from the mesenterial ducts and are histologically distinct from them. They are therefore referred to as digestive, rather than mesenterial filaments. In contrast with other scleractinians, the digestive filaments are thin, unequally bilobed stalks with spatulate ends. The cnidoglandular (CG) lobe, the larger of the two, exhibits a distinct cellular zonation. Large mastigophore cnidae and elongated zymogen-like cells are clustered at its distal end. Neither of these cells appear to respond to particulate food material, suggesting that they may be employed in alternative modes of nutrition and/or competition. Behind the distal region, the CG lobe exhibits typical zymogen, mucus, and collar cells as well as numerous atrichous nematocysts. The atrichs and zymogen cells discharge during particulate feeding. Tracts of collar cells with particularly well-defined cilia, elongated rootlets, and mucus inclusions are found at the outer edge of the CG lobe. These cells disgorge their contents during feeding and appear to function in food transport. The smaller lobe of the filament is a muscular sheet containing well-defined fields of circular and longitudinal myofibrils along with associated neurons. Collar cells with lysosome-like inclusions and large, compartmentalized mucocytes are also characteristic of this region. There are no zooxanthellae in the filaments, but these endosymbionts are present as a thin layer in the oral-most portion of the gastrodermis. The cellular zonation and multi-functionality of these digestive filaments suggest another example of a cnidarian structure at the organ level of complexity.  相似文献   

15.
Epithelial cells are connected to each other around taste pores in rat fungiform papillae. Cytoskeletal components are responsible for the maintenance of intracellular adhesion, and we investigated the identification and localization of actin filaments around taste pores. On the basis of observations made by immunohistochemical transmission electron microscopy comparing with confocal laser scanning microscopy using actin-lectin double staining, actin filaments were found to be localized, encircling the squeezed taste pore cavity, in epithelial cells a few micrometers below the papilla surface. In addition, these observations suggest that the organization of actin filaments around taste pores might be involved in the constriction of taste pores.  相似文献   

16.
合浦珠母贝鳃的显微与超微结构   总被引:1,自引:0,他引:1  
合浦珠母贝(Pinctada fucata)是典型的滤食性瓣鳃类动物,也是我国重要的海水珍珠养殖贝类。本研究用光学显微镜、扫描电镜和透射电镜观察了合浦珠母贝鳃的显微和超微结构。结果表明,合浦珠母贝鳃结构属于异丝鳃型,左右两侧各2个鳃瓣,每个鳃瓣由内鳃瓣和外鳃瓣组成。鳃瓣由主鳃丝和普通鳃丝构成,主鳃丝在鳃瓣中主要起支架作用,每2根主鳃丝之间的9~12根普通鳃丝由"簇内连接"(intrabunchial junction)相连成簇。普通鳃丝之间通过"丝间连接"(interfilament junction)相连,丝间连接的上皮细胞与普通鳃丝的扁平细胞结构一样,为鳃的呼吸上皮。丝间连接的存在扩大了鳃的表面积,这种结构有助于进行气体交换。主鳃丝和普通鳃丝表面有前纤毛和侧纤毛,与食物运送和气体交换有关。普通鳃丝表面的纤毛为典型的"9+2"型微管结构。  相似文献   

17.
Characterization of gliding motility in Flexibacter polymorphus   总被引:3,自引:0,他引:3  
Motility of the marine gliding bacterium Flexibacter polymorphus was studied by using microcinematographic techniques. Following adhesion to a glass surface, multicellular filaments and individual cells usually began to glide within a few seconds at a speed of approximately 12 micron per second (at 23 degrees C). Adhesion to the glass surface was evidently mediated by multitudes of extremely fine extracellular fibrils. Gliding velocity was independent of filament length but directly related to electron-transport activity and substratum temperature in the range 3-35 degrees C. The rate of gliding was inversely related to medium viscosity, suggesting that the locomotor apparatus functions at constant torque. Forward motion was occasionally interrupted by direction reversals, somersaults (observed primarily in single cells of short filaments), or spinning of filaments tethered by one pole. The frequency of direction reversal was found to be an inverse function of filament length. Translational motility was invariably accompanied by sinistral revolution about the longitudinal axis of a filament. The sense and pitch of revolution were constant among filaments of different length. Polystyrene microspheres or India ink particles adsorbed to gliding cells were actively displaced in either direction, their movement tracing either a regular zigzag or helical path along the filament surface. Because microspheres were also observed to move on nonmotile filaments, particle translocation was evidently not obligatorily linked to gliding locomotion. Multiple particles adsorbed to a single filament often moved independently. The data are consistent with a motility mechanism involving limited motion in numerous mechanically independent (yet functionally coordinated) domains on the cell surface.  相似文献   

18.
The localisation of actin filaments was studied in rat urothelial cells during differentiation which accompanied regeneration after cell damage induced by cyclophosphamide (CP). By immunofluorescence it was established that actin filaments equally stained along the cell circumference in basal and intermediate cells, while basolateral cell membrane expression was found in terminally differentiated superficial cells. During regeneration, after CP treatment, simple urothelial hyperplasia developed with smaller cuboidal superficial cells, in which actin filaments were equally distributed under the apical and basolateral plasma membranes. As demonstrated by immunoelectron microscopy, the apical surface of these superficial cells was covered with microvilli containing bundles of actin filaments. Within 1 week, the urothelium reverted to its normal three-layer thickness. Superficial cells became larger and flattened and the unthickened apical plasma membrane matured into a thick asymmetric unit membrane. Concomitantly actin filaments disappeared from apical areas of superficial cells while remaining abundant at basolateral areas. Our results indicate that in the urothelium subcellular distribution of actin filaments can be considered as a marker of cell differentiation. Accepted: 16 September 1999  相似文献   

19.
Summary Keratin filaments of epithelial- and taste-bud cells in the circumvallate papillae of adult and developing mice were studied by immunocytochemistry using monoclonal antikeratin antibodies (PKK2 and PKK3) and by conventional electron microscopy. Elongated cells (type-I,-II, and-III cells) of the taste buds were stained by PKK3 antibody, which reacts with 45-kdalton keratin, whereas basal cells of the taste buds and surrounding epithelial cells showed negative staining with PKK3. Such PKK3-reactive cells occurred at 0 day after birth, when taste-buds first appeared in the dorsal surface epithelium of the papillae. Thus 45-kdalton keratin seems to be an excellent immunocytochemical marker for identifying taste-bud cells. Epithelial cells in all layers of the trench wall and basal layer cells of the dorsal surface contained densely aggregated bundles of keratin filaments that reacted with PKK2 antibody, but not with PKK3. In contrast, taste-bud cells and spinous and granular layer cells of the dorsal surface possessed loose aggregated bundles of filaments that reacted with PKK3, but not with PKK2. These results suggest that the aggregation and distribution pattern of keratin filaments may reflect differences in the keratin subtypes that comprise these filaments.  相似文献   

20.
Within each tapering stereocilium of the cochlea of the alligator lizard is a bundle of actin filaments with > 3,000 filaments near the tip and only 18-29 filaments at the base where the bundle enters into the cuticular plate; there the filaments splay out as if on the surface of a cone, forming the rootlet. Decoration of the hair cells with subfragment 1 of myosin reveals that all the filaments in the stereocilia, including those that extend into the cuticular plate forming the rootlet, have unidirectional polarity, with the arrowheads pointing towards the cell center. The rest of the cuticular plate is composed of actin filaments that show random polarity, and numerous fine, 30 A filaments that connect the rootlet filaments to each other, to the cuticular plate, and to the membrane. A careful examination of the packing of the actin filaments in the stereocilia by thin sectin and by optical diffraction reveals that the filaments are packed in a paracrystalline array with the crossover points of all the actin helices in hear-perfect register. In transverse sections, the actin filaments are not hexagonally packed but, rather, are arranged in scalloped rows that present a festooned profile. We demonstrated that this profile is a product of the crossbridges by examining serial sections, sections of different thicknesses, and the same stereocilium at two different cutting angles. The filament packing is not altered by fixation in different media, removal of the limiting membrane by detergent extraction, or incubation of extracted hair cells in EGTA, EDTA, and Ca++ and ATP. From our results, we conclude that the stereocilia of the ear, unlike the brush border of intestinal epithelial cells, are not designed to shorten, nor do the filaments appear to slide past one another. In fact, the stereocilium is like a large, rigid structure designed to move as a lever.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号