首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Transforming growth factor beta (TGF-beta) superfamily signaling pathways are ubiquitous and essential regulators of cellular processes including proliferation, differentiation, migration, and survival, as well as physiological processes, including embryonic development, angiogenesis, and wound healing. Alterations in these pathways, including either germ-line or somatic mutations or alterations in the expression of members of these signaling pathways often result in human disease. Appropriate regulation of these pathways is required at all levels, particularly at the ligand level, with either a deficiency or an excess of specific TGF-beta superfamily ligands resulting in human disease. TGF-beta superfamily ligands and members of these TGF-beta superfamily signaling pathways also have emerging roles as diagnostic, prognostic or predictive markers for human disease. Ongoing studies will enable targeting of TGF-beta superfamily signaling pathways for the chemoprevention and treatment of human disease.  相似文献   

2.
Dhanasekaran SM  Vempati UD  Kondaiah P 《Gene》2001,263(1-2):171-178
Transforming Growth Factor-beta (TGF-beta) and their receptors have been characterized from many organisms. Two TGF-beta signaling receptors called Type I and II have been described for various ligands of the superfamily from organisms ranging from Drosophila to humans. In Xenopus laevis, TGF-beta2 and 5 have been reported and presumably, play important roles during early development. Several Type I and type II receptors for many ligands of the TGF-beta superfamily except TGF-beta type II receptor (TbetaIIR), have been characterized in Xenopus laevis. A chemical cross linking experiment using iodinated TGF-beta1 and -beta5, revealed four specific binding proteins on XTC cells. In order to understand the TGF-beta involvement during Xenopus development, a TGF-beta type II receptor (XTbetaIIR) has been isolated from a XTC cDNA library. XTbetaIIR was a partial cDNA lacking a portion of the signal peptide. The sequence analysis and homology comparison with the human TbetaIIR revealed 67% amino acid similarity in the extra cellular domain, 60% similarity in the transmembrane domain and 87% similarity in the cytoplasmic kinase domain, suggesting that XTbetaIIR is a putative TGF-beta type II receptor. In addition, the consensus amino acid motif for serine threonine receptor kinases was also present. Further, a dominant negative expression construct lacking the cytoplasmic kinase domain (engineered with the signal peptide from human TGF-beta type II receptor), was able to abolish TGF-beta mediated induction of a luciferase reporter plasmid, in a transient cell transfection assay. This substantiates the notion that XTbetaIIR cDNA can act as a receptor for TGF-beta. RT-PCR analysis using RNA isolated from various developmental stages of Xenopus laevis revealed expression of this gene in all the early stages of development and in the adult organs, except in stages 46/48.  相似文献   

3.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

4.
5.
Smad signalling in the ovary   总被引:1,自引:0,他引:1  
It has now been a decade since the first discovery of the intracellular Smad proteins, the downstream signalling molecules of one of the most important growth factor families in the animal kingdom, the transforming growth factor beta (TGF-beta) superfamily. In the ovary, several TGF-beta superfamily members are expressed by the oocyte, granulosa and thecal cells at different stages of folliculogenesis, and they signal mainly through two different Smad pathways in an autocrine/paracrine manner. Defects in the upstream signalling cascade molecules, the ligands and receptors, are known to have adverse effects on ovarian organogenesis and folliculogenesis, but the role of the individual Smad proteins in the proper function of the ovary is just beginning to be understood for example through the use of Smad knockout models. Although most of the different Smad knockouts are embryonic lethal, it is known, however, that in Smad1 and Smad5 knockout mice primordial germ cell development is impaired and that Smad3 deficient mice harbouring a deletion in exon 8 exhibit impaired folliculogenesis and reduced fertility. In this minireview we discuss the role of Smad structure and function in the ovarian context.  相似文献   

6.
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.  相似文献   

7.
The transforming growth factor-beta superfamily of receptors   总被引:15,自引:0,他引:15  
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.  相似文献   

8.
Bone morphogenetic proteins (BMPs), together with transforming growth factor (TGF)-beta and activins/inhibins, constitute the TGF-beta superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. The crystal structure of human BMP-6 was determined to a resolution of 2.1 A; the overall structure is similar to that of other TGF-beta superfamily ligands, e.g. BMP-7. The asymmetric unit contains the full dimeric BMP-6, indicating possible asymmetry between the two monomeric subunits. Indeed, the conformation of several loops differs between both monomers. In particular, the prehelix loop, which plays a crucial role in the type I receptor interactions of BMP-2, adopts two rather different conformations in BMP-6, indicating possible dynamic flexibility of the prehelix loop in its unbound conformation. Flexibility of this loop segment has been discussed as an important feature required for promiscuous binding of different type I receptors to BMPs. Further studies investigating the interaction of BMP-6 with different ectodomains of type I receptors revealed that N-glycosylation at Asn73 of BMP-6 in the wrist epitope is crucial for recognition by the activin receptor type I. In the absence of the carbohydrate moiety, activin receptor type I-mediated signaling of BMP-6 is totally diminished. Thus, flexibility within the binding epitope of BMP-6 and an unusual recognition motif, i.e. an N-glycosylation motif, possibly play an important role in type I receptor specificity of BMP-6.  相似文献   

9.
TGF-beta and the regulation of neuron survival and death.   总被引:5,自引:0,他引:5  
Transforming growth factor-betas (TGF-betas) constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation, and tissue remodeling. In the developing nervous system, TGF-beta2 and -beta3 occur in radial and astroglial cells as well as in many populations of postmitotic, differentiating neurons. TGF-beta1 is restricted to the choroid plexus and meninges. In addition to functions related to glial cell maturation and performances, TGF-beta2 and -beta3 are important regulators of neuron survival. In contrast to neurotrophic factors, as for example, neurotrophins, TGF-betas are most likely not neurotrophic by themselves. However, they can dramatically increase the potency of select neurotrophins, fibroblast growth factor-2, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor (GDNF). In the case of GDNF, we have shown that GDNF fails to promote the survival of highly purified neuron populations in vitro unless it is supplemented with TGF-beta. This also applies to the in vivo situation, where antibodies to all three TGF-beta isoforms fully prevent the trophic effect of GDNF on axotomized, target-deprived neurons. In addition to the TGF-beta isoforms -beta2 and -beta3, other members of the TGF-beta superfamily are expressed in the nervous system having important roles in embryonic patterning, cell migration, and neuronal transmitter determination. We have cloned and expressed a novel TGF-beta, named growth/differentiation factor-15 (GDF-15). GDF-15 is synthesized in the choroid plexus and released into the CSF, but also occurs in all regions investigated of the developing and adult brain. GDF-15 is a potent trophic factor for developing and 6-OHDA-lesioned midbrain dopaminergic neurons in vitro and in vivo, matching the potency of GDNF.  相似文献   

10.
How the Smads regulate transcription   总被引:4,自引:0,他引:4  
  相似文献   

11.
12.
Growth differentiation factor 9 (GDF9) is an oocyte-expressed member of the transforming growth factor beta (TGF-beta) superfamily and is required for normal ovarian follicle development and female fertility. GDF9 acts as a paracrine factor and affects granulosa cell physiology. Only a few genes regulated by GDF9 are known. Our microarray analysis has identified gremlin as one of the genes up-regulated by GDF9 in cultures of granulosa cells. Gremlin is a known member of the DAN family of bone morphogenetic protein (BMP) antagonists, but its expression and function in the ovary are unknown. We have investigated the regulation of gremlin in mouse granulosa cells by GDF9 as well as other members of the TGF-beta superfamily. GDF9 and BMP4 induce gremlin, but TGF-beta does not. In addition, in cultures of granulosa cells, gremlin negatively regulates BMP4 signaling but not GDF9 activity. The expression of gremlin in the ovary was also examined by in situ hybridization. A distinct change in gremlin mRNA compartmentalization occurs during follicle development and ovulation, indicating a highly regulated expression pattern during folliculogenesis. We propose that gremlin modulates the cross-talk between GDF9 and BMP signaling that is necessary during follicle development because both ligands use components of the same signaling pathway.  相似文献   

13.
The p53 tumor suppressor gene and members of the transforming growth factor-beta (TGF-beta) superfamily play central roles in signaling cell cycle arrest and apoptosis (programmed cell death) in normal development and differentiation, as well as in carcinogenesis. Here we describe a distantly related member of the TGF-beta superfamily, designated placental TGF-beta (PTGF-beta), that is up-regulated in response to both p53-dependent and -independent apoptotic signaling events arising from DNA damage in human breast cancer cells. PTGF-beta is normally expressed in placenta and at lower levels in kidney, lung, pancreas, and muscle but could not be detected in any tumor cell line studied. The PTGF-beta promoter is activated by p53 and contains two p53 binding site motifs. Functional studies demonstrated that one of these p53 binding sites is essential for p53-mediated PTGF-beta promoter induction and specifically binds recombinant p53 in gel mobility shift assays. PTGF-beta overexpression from a recombinant adenoviral vector (AdPTGF-beta) led to an 80% reduction in MDA-MB-468 breast cancer cell viability and a 50-60% reduction in other human breast cancer cell lines studied, including MCF-7 cells, which are resistant to growth inhibition by recombinant wild-type p53. Like p53, PTGF-beta overexpression was seen to induce both G(1) cell cycle arrest and apoptosis in breast tumor cells. These results provide the first evidence for a direct functional link between p53 and the TGF-beta superfamily and implicate PTGF-beta as an important intercellular mediator of p53 function and the cytostatic effects of radiation and chemotherapeutic cancer agents.  相似文献   

14.
The TGF-beta superfamily of ligands and receptors stimulate cellular events in diverse processes ranging from cell fate specification in development to immune suppression. Activins define a major subgroup of TGF-beta ligands that regulate cellular differentiation, proliferation, activation and apoptosis. Activins signal through complexes formed with type I and type II serine/threonine kinase receptors. We have solved the crystal structure of activin A bound to the extracellular domain of a type II receptor, ActRIIB, revealing the details of this interaction. ActRIIB binds to the outer edges of the activin finger regions, with the two receptors juxtaposed in close proximity, in a mode that differs from TGF-beta3 binding to type II receptors. The dimeric activin A structure differs from other known TGF-beta ligand structures, adopting a compact folded-back conformation. The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface and suggests that diversity in the conformational arrangements of TGF-beta ligand dimers could influence cellular signaling processes.  相似文献   

15.
16.
TGF-beta superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-beta type II receptor appears to bind only TGF-beta, whereas TGF-beta type I receptor (ALK5) also binds to ligands in addition to TGF-beta. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-beta type II receptor (Wnt1-Cre;Tgfbr2(fl/fl)) and TGF-beta type I receptor/Alk5 (Wnt1-Cre;Alk5(fl)(/fl)) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development.  相似文献   

17.
Dimeric ligands of the transforming growth factor-beta (TGF-beta) superfamily signal across cell membranes in a distinctive manner by assembling heterotetrameric complexes of structurally related serine/threonine-kinase receptor pairs. Unlike complexes of the bone morphogenetic protein (BMP) branch that apparently form due to avidity from membrane localization, TGF-beta complexes assemble cooperatively through recruitment of the low-affinity (type I) receptor by the ligand-bound high-affinity (type II) pair. Here we report the crystal structure of TGF-beta3 in complex with the extracellular domains of both pairs of receptors, revealing that the type I docks and becomes tethered via unique extensions at a composite ligand-type II interface. Disrupting the receptor-receptor interactions conferred by these extensions abolishes assembly of the signaling complex and signal transduction (Smad activation). Although structurally similar, BMP and TGF-beta receptors bind in dramatically different modes, mediating graded and switch-like assembly mechanisms that may have coevolved with branch-specific groups of cytoplasmic effectors.  相似文献   

18.
Activin/nodal-like TGF-beta superfamily ligands signal through the type I receptors Alk4, Alk5, and Alk7, and are responsible for mediating a number of essential processes in development. SB-431542, a chemical inhibitor of activin/nodal signaling, acts by specifically interfering with type I receptors. Here, we use inhibitor-resistant mutant receptors to examine the efficacy and specificity of SB-431542 in Xenopus and zebrafish embryos. Treatment with SB-431542 eliminates Smad2 phosphorylation in vivo and generates a phenotype very similar to those observed in genetic mutants in the nodal signaling pathway. Inhibitor-resistant Alk4 efficiently rescues Smad2 signaling, developmental phenotype, and marker gene expression after inhibitor treatment. This system was used to examine type I receptor specificity for several activin/nodal ligands. We find that Alk4 can efficiently rescue signaling by a wide range of ligands, while Alk7 can only weakly rescue signaling by the same ligands. In whole embryos, nodal signaling during gastrulation can be rescued with Alk4, but not Alk7, while Alk5 can only mediate signaling by ligands expressed later in development. The combination of the ALK inhibitor SB-431542 with inhibitor-resistant ALKs provides a powerful set of tools for examining nodal/activin signaling during embryogenesis.  相似文献   

19.
The transforming growth factor beta (TGF-beta) superfamily includes bone morphogenetic proteins, activins and TGF-betasensu stricto (s.s). These ligands, which transduce their signal through a heteromeric complex of type I and type II receptors, have been shown to play a key role in numerous biological processes including early embryonic development in both deuterostomes and ecdyzozoans. Lophochotrozoans, the third major group of bilaterian animals, have remained in the background of the molecular survey of metazoan development. We report the cloning and functional study of the central part of the BMP pathway machinery in the bivalve mollusc Crassostrea gigas (Cg-BMPR1 type I receptor and Cg-TGFbetasfR2 type II receptor), showing an unusual functional mode of signal transduction for this superfamily. The use of the zebrafish embryo as a reporter organism revealed that Cg-BMPR1, Cg-TGFbetasfR2, Cg-ALR I, an activin Type I receptor or their dominant negative acting truncated forms, when overexpressed during gastrulation, resulted in a range of phenotypes displaying severe disturbance of anterioposterior patterning, due to strong modulations of ventrolateral mesoderm patterning. The results suggest that Cg-BMPR1, and to a certain degree Cg-TGFbetasfR2 proteins, function in C. gigas in a similar way to their zebrafish orthologues. Finally, based on phylogenetic analyses, we propose an evolutionary model within the complete TGF-beta superfamily. Thus, evidence provided by this study argues for a possible conserved endomesoderm/ectomesoderm inductive mechanism in spiralians through an ancestral BMP/activin pathway in which the singular, promiscuous and probably unique Cg-TGFbetasfR2 would be the shared type II receptor interface for both BMP and activin ligands.  相似文献   

20.
Members of the transforming growth factor beta (TGF-beta) superfamily of peptide growth factors have profound effects on the growth and differentiation of many cell types. Insights into the poorly understood mechanisms of action of these ligands have come from the recent molecular cloning of two types of high-affinity receptors - type II and type III - for TGF-beta superfamily members. The cell surface expression of the type III receptor, a membrane-bound proteoglycan, appears to modulate the binding of ligand to the type II receptor, which is a transmembrane serine/threonine kinase. These results provide evidence for interactions between different receptor types, and suggest that serine/threonine phosphorylation is an important element in TGF-beta-induced signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号