首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE--To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. DESIGN--Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. SETTING--Study in normal people at a diabetes research unit and a university department of medical physics. SUBJECTS--Seven healthy male volunteers aged 20-39 not receiving any other drugs. INTERVENTIONS--After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. END POINT--To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and more dramatic hypoglycaemic effect with the insulin analogue. CONCLUSIONS--The much faster absorption from subcutaneous tissue of the disubstituted monomeric insulin analogue compared with soluble insulin suggests that the analogue may be a potential candidate for rapid insulin delivery after subcutaneous bolus injection.  相似文献   

2.
In rats, a moderately hepatotoxic single dose of diethylnitrosamine (DEN) 100 mg/kg causing depletion of liver glycogen, elevation of aspartate aminotransferase and decreased liver uptake of 3-O-methylglucose, resulted in substantial changes in insulin and glucagon balance. Two days after DEN, insulin binding to liver membranes and insulin removal by the liver were sharply reduced whereas its binding to muscle and adipocyte membranes remained unaltered. Serum insulin (random and after an overnight fast) remained normal. Intravenous (I.V.) insulin (10 U/kg) caused the usual degree of hypoglycemia that, however, lasted longer than in the control animals. Removal of glucagon by liver was also depressed in spite of its normal binding to hepatocytes, and peripheral serum glucagon was increased three-fold. I.V. glucagon (40 micrograms/kg) resulted in a blunted response of plasma glucose. I.V. glucose tolerance test (1 g/kg) remained normal in spite of the insulin increase to a level twice as high as in the controls, and in spite of nonsuppressed glucagon. These changes were still present after 1-3 months, but disappeared by 6 months. The results demonstrate remarkable ability of homeostatic mechanisms to preserve normal plasma glucose and glucose tolerance in spite of dramatic changes in insulin and glucagon.  相似文献   

3.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

4.
Plasma glucagon (IRG), insulin and glucose responses to intravenous arginine infusion in the rat were studied. Three doses of arginine hydrochloride were infused into fasted rats: 0.2 gm/kg b.w., 0.5 gm/kg b.w., and 1 gm/kg b.w. The 0.2 gm/kg dose did not result in significant elevation of plasma IRG or insulin. Both the 0.5 and 1 gm/kg doses produced a significant increase in glucagon and insulin levels within 5 minutes of starting the infusion. The 1 gm/kg dose was most effective in stimulating secretion of both hormones. This dose produced a 250% rise in the plasma IRG compared to 80% peak rise with the 0.5 gm/kg dose (p less than .01) and 1055% rise in insulin levels compared to a peak level of 225% above baseline with the 0.5 gm/kg dose (p less than .001). These results demonstrate the effectiveness of intravenous arginine in the stimulation of glucagon and insulin secretion in the rat.  相似文献   

5.
Alloxan diabetic dogs with insulin deficiency showed a transient but significant rise in glucagon levels after oral glucose load (1 g/kg). Pretreatment with atropine sulfate (0.2 mg/kg intravenously) totally suppressed this increase. So, the transient paradoxical rise of glucagon level observed in diabetic dogs after glucose intake is under cholinergic control.  相似文献   

6.
T Karashima  A V Schally 《Peptides》1988,9(3):561-565
The action of the new analog of somatostatin, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), on plasma glucagon and glucose levels was evaluated in streptozotocin-diabetic rats. The effect of this analog on the insulin-induced hypoglycemia in diabetic rats was also investigated in order to evaluate the risk of exacerbating hypoglycemia. Administration of analog RC-160, in a dose of 25 micrograms/kg b. wt. SC, inhibited plasma glucagon secretion and decreased plasma glucose levels. This effect also occurred when plasma glucagon and glucose levels were first elevated by arginine infusion, 1000 mg/kg/hr for 30 min. Subcutaneous injection of regular insulin, 15 U/kg b. wt., produced hypoglycemia with a progressive increase in glucagon levels. Analog RC-160 completely suppressed the hypoglycemia-induced glucagon release for up to 150 min after injection of the analog or insulin. A greater decrease in the plasma glucose level was observed in the group treated with insulin and the analog than in the group injected only with insulin. These results indicate that somatostatin analog RC-160 can produce a marked and prolonged inhibition of glucagon release and a decrease in the plasma glucose level in diabetic rats. This analog may be useful as an adjunct to insulin in the treatment of diabetic patients, although caution should be exercised, to prevent hypoglycemia when using somatostatin analogs together with insulin.  相似文献   

7.
We have studied the pancreatic hormone-glucose feed-back mechanisms by infusing glucagon (G), insulin (I) and glucose into normal fasting geese. The controls received saline. Whilst a NaCl 9% infusion is devoid of effect, the pancreatic hormones, used at physiological doses, modify the plasma glucose level, glucagon being hyperglycaemic and insulin hypoglycaemic. In addition, a physiological increase in plasma glucose provokes a drop in plasma glucagon and a rise in plasma insulin, thus a marked decrease in the G/I ratio. The results show that the pancreatic hormone-glucose feed-back mechanisms are effective under physiological conditions.  相似文献   

8.
The lipolytic effect of glucagon was measured in vitro with adipose tissue of "young" (4-8 wk) and "old" (over 1 yr) geese. The response of the young geese tissue was about twice that observed with tissue of old geese, for glucagon concentrations of 0.05, 0.5, and 5.0 mug/ml. Our estimates indicate that the number of adipose cells per g of adipose tissue of young geese was three times that of the old geese tissue. This suggests that the greater lipolytic response to glucagon, observed in young geese adipose tissue, may possibly be due to its greater cellularity, rather than to a greater lipolytic response of the individual adipocyte. The lipolytic effect of glucagon in vivo, for each of the doses between 1.0 and 20.0 mug/kg, was significantly greater in the old than in the young geese. The slope of the linear equation relating log10 of glucagon dose and elevation of plasma FFA 5 min after injection, was significantly greater for the old than for the young geese. In the goose, therefore, the influence of age on the adipokinetic effect of glucagon appears to be mediated by factors operating in the whole animal, more than by changes in the adipose cell itself. A slower removal rate of circulating FFA by the old geese, could be one of these factors.  相似文献   

9.
The present study was performed to further clarify the possible role played by insulin deficiency on the steroidogenic capacity of the rat testis. Sprague-Dawley rats weighing 250-300 g were used in all experiments. Diabetes was induced by i.p. injection (40 mg/kg b.w.) of streptozotocin and was monitored at 2-day intervals by measuring body weight and serum glucose, glucosuria and ketonuria levels. The effect of insulin therapy on pituitary LH content and plasma LH concentrations, as well as on the cyclic AMP level in interstitial cell incubation medium and plasma testosterone concentrations, was measured 30 days after the induction of diabetes by radioimmunoassay. Streptozotocin-induced diabetes resulted in significantly reduced pituitary LH (16%, P less than 0.025) and plasma LH (34%, P less than 0.02); insulin treatment completely restored these levels. Similarly, the cyclic AMP content of interstitial cell incubation medium and the plasma testosterone concentrations were dramatically decreased in the diabetic state (50%, P less than 0.005 and 63%, P less than 0.025, respectively) and combined treatment with insulin plus hCG appeared slightly more effective than treatment with either of these hormones alone, suggesting a possible synergistic action. It is concluded that decreased testicular steroidogenesis in the diabetic rat may represent, at least in part, a direct consequence of insulin deficiency at the hypothalamic and/or pituitary levels. However, our findings would also be consistent with other reports suggesting that insulin may play a direct role in the rat testis.  相似文献   

10.
This work was designed to study the effects of sodium 2-chloropropionate (2CP) alone or combined with insulin, in vitro, on glucagon secretion from pancreas isolated from rats, made diabetic by streptozotocin (66 mg/kg i.p.). The pancreata were perfused with a physiological solution containing 2.8 mM glucose (0.5 g/l) and glucagon secretion was stimulated by an arginine infusion (5 mM) for 30 min. When 2CP (1 mM) and/or insulin (4 IU/l) were applied, they were infused from the start of the organ perfusion. In the presence of glucose alone, a marked decrease in glucagon output was observed in diabetic rat pancreas. The arginine perfusion induced a biphasic glucagon secretion both in normal and diabetic rat pancreas; this response was however clearly reduced in diabetic rat pancreas. In diabetic rat pancreas, the infusion of either 2CP or insulin had no effect on glucagon output in presence of glucose alone, nor did it modify the response to arginine. In contrast, the combined infusion of insulin and 2CP induced different effects depending on the conditions: whereas in presence of glucose alone it restored a glucagon output close to that recorded in normal rat pancreas, it did not modify the response to arginine.  相似文献   

11.
Measurements of plasma GLI and IRI in normal fasting geese, before and during constant I.V. infusion of saline, gave GLI/I ratios of 1.32 +/- .07 and 1.34 +/- .03 (w/w). As total pancreatectomy markedly reduces the pancreatic hormone level, leading to a mortal hypoglycaemia, we attempted to maintain plasma glucose within the normal range by constant I.V. infusion of glucagon and insulin into operated animals. The results as follows: 1. Blood glucose levels can be maintained within the normal range during experiments lasting 6 or more hours with a constant G/I ratio. 2. The G/I ratio obtained in operated animals (.96 +/- .12) is near to, but significantly lower (p less than .005) than, the GLI/I ratio measured in normal animals. This difference may be explained by the presence of a small amount of circulating gut GLI in the 2nd group.  相似文献   

12.
Helodermin stimulates glucagon secretion in the mouse   总被引:1,自引:0,他引:1  
B Ahrén 《Peptides》1989,10(3):709-711
Helodermin is structurally similar to VIP (vasoactive intestinal peptide) and PHI (peptide histidine isoleucine). Since VIP and PHI both stimulate insulin and glucagon secretion, we investigated the effects of helodermin on insulin and glucagon secretion in the mouse, both in the basal state and during administration of glucose and the cholinergic agonist carbachol. After intravenous injection at dose levels between 0.5 and 8.0 nmol/kg, helodermin markedly enhanced basal plasma glucagon levels, for example at 8 nmol/kg from 139 +/- 14 to 421 +/- 86 pg/ml (p less than 0.001) after 6 minutes, without affecting basal plasma insulin levels. Together with glucose (2.8 mmol/kg), helodermin (2 and 8 nmol/kg) augmented plasma glucagon levels but had no effect on plasma insulin levels. When injected together with the cholinergic agonist carbachol (0.16 mumol/kg), helodermin markedly potentiated the increase in plasma glucagon levels (more than three-fold; p less than 0.001), again without affecting the plasma insulin levels. Combined alpha- and beta-adrenoceptor blockade (yohimbine + L-propranolol) reduced the augmenting effect of helodermin on glucagon secretion by approximately 60%. It is concluded helodermin stimulates glucagon secretion in the mouse by an effect that is partially antagonized by combined alpha- and beta-adrenoceptor antagonism.  相似文献   

13.
We have demonstrated previously that cyclic somatostatin (GH-RIH) exerts a diabetogenic action in healthy subjects. To further examine the impact of this phenomenon studies of blood glucose (BG), immunoreactive insulin (IRI), glucagon (IRG) and growth hormone (GH) were performed in insulin requiring diabetics (n = 6) receiving i.v. arginine (0.5 g/kg) both in the absence and presence of i.v. GH-RIH (500 microgram/h). The infusion of GH-RIH-resulted in a persistent diminution in plasma IRI, IRG and GH. BG fell during i.v. GH-RIH during the initial 30 min and was below control values up to 45 min after initiation of i.v. arginine, but subsequently exceeded control levels (p less than 0.05 - less than 0.025). The excess rise in BG occurred in spite of suppression by somatostatin of the ariginine induced release of IRG, IRI and GH. A fall in BG was seen following cessation of i.v. GH-RIH and during a rebound of insulin release with glucagon levels remaining in the basal range. These findings indicate a diabetogenic action of somatostatin also in insulin requiring diabetics as long as some residual capacity for insulin release is retained.  相似文献   

14.
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.  相似文献   

15.
In eight insulin dependent diabetic patients treated by continuous subcutaneous insulin infusion (1.1 +/- 0.2 U/h), the levels (measured hourly from 23 h to 05 h) of blood glucose, non esterified fatty acids (NEFA), glycerol and 3-OH-butyrate (3-OH-B) have been correlated to the circulating levels of free insulin (FIRI), glucagon, growth hormone or cortisol, in two experimental conditions: A. Insulin being infused as usual (physiological FIRI levels) and B. Progressively declining FIRI levels (insulin infusion arrested at 23 h). In condition A, blood glucose levels correlated significantly to both insulin and glucagon; NEFA, glycerol and 3OH-B correlated only to insulin. In condition B, blood glucose was significantly correlated to insulin but not to glucagon while NEFA, glycerol and 3-OH-B were significantly correlated to both hormones but not to growth hormone or cortisol. Therefore, on the metabolic deterioration that follows insulin withdrawal, growth hormone and cortisol seem to play a minor role, the main role being played by the decrease in circulating insulin levels and to a lesser extent by the increase in glucagon levels.  相似文献   

16.
AIMS: It was the aim of the study to examine whether the insulinotropic gut hormone GLP-1 is able to control or even normalise glycaemia in healthy subjects receiving intravenous glucose infusions and in severely ill patients hyperglycaemic during total parenteral nutrition. PATIENTS AND METHODS: Eight healthy subjects and nine patients were examined. The volunteers received, in six separate experiments in randomised order, intravenous glucose at doses of 0, 2 and 5mg kg(-1) min(-1), each with intravenous GLP-1 or placebo for 6 h. Patients were selected on the basis of hyperglycaemia (>150 mg/dl) during complete parenteral nutrition with glucose (3.2+/-1.4 mg kg(-1) min(-1)), amino acids (n=8; 0.9+/-0.2 mg kg(-1) min(-1)), with or without lipid emulsions. Four hours (8 a.m. to 12 a.m. on parenteral nutrition plus NaCl as placebo) were compared to 4 h (12 a.m. to 4 p.m.) with additional GLP-1 administered intravenously. The dose of GLP-1 was 1.2 pmol kg(-1) min(-1). Blood was drawn for the determination of glucose, insulin, C-peptide, GLP-1, glucagon, and free fatty acids. RESULTS: Glycaemia was raised dose-dependently by glucose infusions in healthy volunteers (p<0.0001). GLP-1 ( approximately 100-150 pmol/l) stimulated insulin and reduced glucagon secretion and reduced glucose concentrations into the normoglycaemic fasting range (all p<0.05). In hyperglycaemic patients, glucose concentrations during the placebo period averaged 211+/-24 mg/dl. This level was reduced to 159+/-25 mg/dl with GLP-1 (p<0.0001), accompanied by a rise in insulin (p=0.0002) and C-peptide (p<0.0001), and by trend towards a reduction in glucagon (p=0.08) and free fatty acids (p=0.02). GLP-1 was well tolerated. CONCLUSIONS: Hyperglycaemia during parenteral nutrition can be controlled by exogenous GLP-1, e.g. the natural peptide (available today), whereas the chronic therapy of Type 2 diabetes requires GLP-1 derivatives with longer duration of action.  相似文献   

17.
BACKGROUND: Glucagon stimulation is routinely used as a provocative test to assess growth hormone (GH) sufficiency in pediatrics. Ghrelin also markedly stimulates GH secretion. Because glucagon stimulates the promoter of the ghrelin gene in vitro as well as ghrelin secretion by the perfused rat stomach, we sought to determine whether ghrelin mediates glucagon-induced GH secretion. METHODS: We compared ghrelin, GH, insulin and glucose responses following administration of 0.03 mg/kg intravenously (iv; max. 1 mg) and 0.1 mg/kg intramuscularly (im; max. 2 mg) of glucagon in two groups (n = 10-11/group) of GH-sufficient children. We also measured ghrelin before and 6 min after iv administration of 1 mg glucagon in 21 adult subjects. RESULTS: In children, glucagon caused a 26% decrease in ghrelin and a 72% increase in glucose concentrations that were independent of the dose or administration route of glucagon. In contrast, the insulin response was 2-3 times higher following administration of 0.1 mg/kg im compared to 0.03 mg/kg of glucagon iv. There was a significant correlation between the maximum decrease in ghrelin and increases in glucose (p = 0.03) but not in insulin. There was a significant correlation between ghrelin and GH area under the curve after controlling for the dose of glucagon (p = 0.03) but not for the maximum increase in glucose.In normal adults, glucagon administration caused a 7% decrease in ghrelin concentrations after 6 min (p = 0.0002). CONCLUSION: Ghrelin does not play a causal role in the GH response to pharmacological glucagon administration, which suppresses ghrelin levels starting a few minutes after injection.  相似文献   

18.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The effect of somatostatin (SRIF) on glucagon and insulin secretion was examined in fed and fasted sheep. This was related to changes in glucose production. Infusion of SRIF at 80 micrograms/h caused a marked reduction in plasma glucagon concentrations. However, the insulin response to SRIF infusion was not consistent; its concentrations decreased occasionally, but often did not change. The depression of glucagon was not associated with a significant reduction in blood glucose concentrations in either fed or fasted sheep, but was associated with a reduction in glucose production by 12--15%. The inhibitory effect of insulin on glucose production was not markedly increased by glucagon deficiency. Infusion of insulin at 1.17 U/h with SRIF decreased glucose production only an additional 10%. Thus, it appears that under basal conditions pancreatic hormonal influences on hepatic glucose production were relatively small in sheep. This implies that under normal conditions in sheep, substrate supply has a much greater impact on hepatic glucogenesis than do hormones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号