首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies were undertaken to examine the time-dose relationships for the induction of lung adenocarcinomas and mammary adenocarcinomas in female BALB/c mice following gamma irradiation. Twelve-week-old female BALB/c/An NBd mice were irradiated with 137Cs gamma rays, and lifetime tumor incidences following high-dose-rate, low-dose-rate, or fractionated exposure regimens were compared. Analysis of the results indicated that the data could be fitted by linear-quadratic dose-response models for the induction of both tumors following acute doses and a linear model with a slope similar to that for the linear portion of the linear quadratic following low-dose-rate exposure regimens. When doses were fractionated the response was dependent upon the dose per fraction. If the dose per fraction was a dose which was predominantly on the linear portion of the acute dose response curve, then the response was linear and similar to that after low-dose-rate exposures. If the dose per fraction was in a region where the quadratic portion of the acute dose-response was significant, then the tumor incidence was higher than that following low-dose-rate exposures.  相似文献   

2.
Data are presented on the mean after survival of female B6CF1 mice exposed to single doses of neutrons (1 to 40 rad) or gamma rays (22.5, 45, and 90 rad). For gamma-ray exposures and for neutron exposures up to 10 rad, the dose-response curves are indistinguishable from linear; higher neutron doses produce significant departures and linearity. Consequently, in these data, an upper limit of the relative biological effectiveness (RBE) exists for life shortening from all causes of death after single neutron exposures; this value is 15.0 +/- 5.1. The RBE depends on the cause of death, ranging from 2 to 5 for lymphoreticular tumors to 23-24 for lung tumors.  相似文献   

3.
The induction of myeloid leukemia following fission neutron irradiation was examined over the 0-80 rad dose range. Over this dose range the dose response could be described by the linear regression equation: y = 0.94 + 0.18X. A comparison of these data with data obtained following gamma irradiation from this study and a previous study indicated that the relative biological effectiveness for myeloid leukemia induction was 2.8. These results appear to be compatible with those reported by other investigators.  相似文献   

4.
Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or gamma rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic gamma exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h-1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h-1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of gamma rays.  相似文献   

5.
Studies in this laboratory have shown enhancement of the mammary tumorigenic effects of neutron irradiation after low-dose-rate neutron exposures. To investigate possible reasons, a mammary cell system was used which allows quantitation of initiated mammary epithelial cells and examination of the progression of these radiation-altered cells toward the neoplastic phenotype. Female BALB/c mice were irradiated with fission-spectrum neutrons at dose rates of 1 rad/min or 1 rad/day. Twenty-four hours or 16 weeks after irradiation, mammary cells were obtained by enzymatic dissociation. Mammary outgrowths were derived by injection of 10(4) cells into gland-free fat pads of 3-week-old female BALB/c mice. The frequency of ductal dysplasias in outgrowths from cells irradiated at high or low dose rates was similar. Persistence of dysplasias differed markedly. Few of the dysplasias in outgrowths derived from cells irradiated at the high dose rate persisted, while a large fraction of the dysplasias in outgrowths derived from cells irradiated at low dose rate persisted. When cells remained in situ for 16 weeks prior to dissociation a higher frequency of persistent altered cells was also observed in outgrowths derived from cells irradiated at low neutron dose rates. These data suggest that low-dose-rate neutron exposures enhance the probability of progression of carcinogen-altered cells rather than increase the numbers of initiated cells.  相似文献   

6.
Extension of previous investigations at this laboratory regarding life shortening and tumor induction in the mouse has provided more complete dose-response information in the low dose region of X rays and neutrons. A complete observation of survival and late pathology has been carried out on over 2000 BC3F1 female mice irradiated with single doses of 1.5 MeV neutrons (0.5, 1, 2, 4, 8, 16 cGy) and, for comparison, of X rays (4, 8, 16, 32, 64, 128, 256 cGy). Data analysis has shown that a significant life shortening is observable only for individual neutron doses not lower than 8 cGy. Nevertheless, assuming a linear nonthreshold form for the overall dose-effect relationships of both radiation qualities, an RBE value of 12.3 is obtained for the 1.5 MeV neutrons. The induction of solid tumors by neutrons becomes statistically significant at individual doses from 8 cGy and by X rays for doses larger than 1 Gy. Linear dependence on neutron dose appears adequate to interpret the data at low doses. A separate analysis of ovarian tumor induction substantiates the hypothesis of a threshold dose for the X rays, while this is not strictly needed to interpret the neutron data. A trend analysis conducted on the neoplasm incidence confirms the above findings. Death rates have been analyzed, and a general agreement between the shift to earlier times of these curves and tumor induction was found.  相似文献   

7.
These studies have examined alterations in the in vivo growth properties of mammary epithelial cells isolated at 1, 4, and 16 weeks after in vivo irradiation with -137Cs gamma rays or fission-spectrum neutrons. Altered in vitro growth potential was characterized by the proliferation of epithelial foci (EF) from irradiated animals under conditions in which mammary cells from nonexposed animals senesced. These EF were further characterized based on their ability to be subcultured. Both gamma and neutron irradiation resulted in the appearance of cells capable of forming EF. Further, with increased time in situ between irradiation and cell isolation, the frequency of EF which were capable of being subcultured indefinitely (EFs) increased. Reducing the gamma-ray dose rate resulted in fewer EFs while reducing the neutron dose rate resulted in increased frequencies of EFs. These data confirm earlier observations following gamma irradiation and show these cellular changes are also observed following neutron irradiation. In addition, these data indicate that changes in dose rate primarily influence the emergence of immortalized cell populations.  相似文献   

8.
Lung tolerance is assessed from LD50 at 180 days after thoracic irradiation, in mice, with d(50) + Be neutrons and 60Co gamma rays. Early intestinal tolerance is assessed from LD50 at 7 days after abdominal irradiation. Additional dose (Dr) to reach LD50 when a single dose Ds is split into 2 equal fractions Di separated by different time intervals "i", is determined (Dr = 2Di - Ds), Dr is larger after gamma than after neutron irradiation, for lung and intestine. After thoracic irradiation with gamma rays, Dr reaches 3.36, 4.38, 5.12 and 5.37 Gy for "i" = 2, 6, 12 and 24 hours respectively; after neutron irradiation, Dr reaches 0.66, 0.9, 1.29, 1.95 and 1.50 Gy for "i" = 1, 2, 4, 12 and 24 hours. Dr is smaller for intestine; after abdominal irradiation with gamma rays, it reaches 1.99, 2.59, 2.74, 3.11, 3.34, 4.44 and 4.56 Gy for "i" = 1, 2, 3.5, 8, 12, 18 and 24 hours; after neutron irradiation, it reaches 0.13, 0.45, 0.42 and 1.33 Gy for "i" = 1.5, 3.5, 5.5 and 24 hours. After gamma irradiation, early repair is complete after 3.5 hours for intestine and needs 12 hours for lung.  相似文献   

9.
Summary The effect of single -dose local treatment with 400 to 1600 rad of gamma irradiation on the growth of syngeneic mammary carcinoma (MC) and fibrosarcoma (FS) subcutaneous (SC) implants was investigated in female C3H/He hosts. The mice were prepared so as to present the tumor implant in various stages of growth at the time of irradiation and with the implantation site at various stages of development of the local immune rejection response. With the doses of radiation used, the growth of the tumors was, under all experimental conditions, reduced by irradiation, and the incidences of complete rejection were increased. On the basis of these observations, and supported by histological examinations, it appears that therapeutic doses of small field irradiation are unlikely to compromise a local tumor rejection response.  相似文献   

10.
Early repair (Elkind) after d(50) + Be neutron and gamma irradiation is assessed by determining the additional dose Dr necessary to reach a given biological effect when a single fraction Ds is split into 2 equal fractions 2Di separated by a time interval "i". LD50 at 180 days after thoracic irradiation is used as an evaluation of late pulmonary tolerance; LD50 at 5 days after abdominal irradiation is used as an evaluation of early intestinal tolerance. Dr is reduced but still important after neutron irradiation as compared to gamma irradiation. For LD50/180, after fast neutron irradiation Dr reaches 66, 90, 64, 162, 195, 150 cGy for "i" = 1, 2, 3, 5, 4, 12, and 24 hours respectively; after gamma irradiation, Field and Hornsey reported Dr = 390, 530, and 376 cGy for "i" = 2, 6, and 24 hours respectively; after neutron irradiation, they reported Dr = 190 cGy for "i" = 24 hours. For LD50/5, after fast neutron irradiation, Dr = 14, 45, 43, and 133 cGy for "i" = 1,5, 3,5, 5,5 and 24 hours respectively. Early repair is faster after gamma irradiation: Dr reaches a maximum for "i" = 3-4 hours. For neutrons, Dr reaches its maximum at 24 hours for both criteria.  相似文献   

11.
The relative biological effectiveness (RBE) of 239Pu alpha particles, fission neutrons (0.85 MeV), and 60Co gamma rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF1 mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for 239Pu (single intravenous dose of 10 microCi/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for gamma rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to gamma radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. For translocations, the n/gamma ratio is between 10 and 24, depending upon weekly dose level, and the ratio is 1 or less for the alpha particle relative to the neutron. For fragments, the n/gamma ratio is 18 to 22, depending upon age factors, and alpha/n is 1.5. For chromatid rearrangements, n/gamma is 7 and alpha/n is essentially indeterminate, but much below one. The overall response to the alpha emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.  相似文献   

12.
The present analysis of data on the induction of lymphoma and myeloid leukemia in BC3F1 mice has indicated some new and interesting aspects regarding the shapes of the dose-effect curves. The incidence data can be interpreted by radiobiological models of the induction process coupled with cell inactivation. In particular, for malignant lymphoma the dose-response curve after X rays can be described assuming a quadratic model corrected for cell inactivation, while the incidence data after fission neutrons are best fitted by a linear model which also allows for cell inactivation. Myeloid leukemia has also been induced in BC3F1 mice. The bell-shaped dose-response curves observed after irradiation with either X rays or neutrons are explained by assuming simultaneous initial transforming events and cell inactivation with the data for cell inactivation at higher doses being in agreement with data reported for other strains of mice. A value for relative biological effectiveness of 4 is obtained at the lowest neutron dose used. The value of the inactivation parameters can be compared with those of the cell inactivation probability per unit dose for the bone marrow hematopoietic stem cells, which are believed to be the target cells for these tumors.  相似文献   

13.
Biological effectiveness of a mixed-beam regimen of fast neutrons and photons was studied in an animal tumor system. NFSa , a spontaneous fibrosarcoma in a C3H mouse, was transplanted in the right hind legs of syngeneic male mice and locally irradiated with a single dose or five daily doses. Tumor control experiments showed that five gamma-ray doses increased TCD50 values by 20 Gy and produced a shallower slope on the dose-response curve compared to that after a single fraction. Fractionated neutron doses also increased the TCD50 value by 9 Gy without changing the slope of the dose-response curve. A mixed-beam regimen of N-gamma-gamma-gamma-N resulted in an independent effect on the tumor. Second, tumor cell survival was examined by the lung colony assay. Nembutal anesthesia reduced the tumor oxic cell fraction, resulting in a single component dose-response curve after a single gamma ray. Five fractionated doses of gamma rays increased both D0 and extrapolation number while those of fast neutrons increased only extrapolation number. The D0 and extrapolation number of the mixed-beam regimen were again identical to those values assuming that the mixed-beam effect was independent. RBEs obtained from cell survival were fairly close to those from TCD50 assays except single-dose experiments.  相似文献   

14.
Arumugam A  Parada J  Rajkumar L 《Steroids》2012,77(7):791-797
In a previous study, we observed that N-methyl-N-nitrosourea (MNU)-induced mammary lesions are promoted to overt mammary cancers by exogenous administration of estradiol (E) and progesterone (P). The purpose of the present study was to identify the early molecular events occurring during the hormonal promotion of mammary carcinogenesis and persistent activation of molecular pathways responsible for tumor growth. Seven-week-old female Copenhagen (COP) rats, which are resistant to MNU-induced mammary carcinogenesis, were intraperitoneally administered a single dose of MNU (50 mg/kg body weight). Six weeks after carcinogen administration, the rats were treated with E+P, killed at 15th week and 43rd week to obtain mammary lesions and tumor tissues and the molecular analysis were performed. Quantitative RT-PCR experiments showed increased mRNA expression of Igfr, Grb2, Sos1, and Shc1 in mammary lesions and tumors. Immunoblot data also showed increased protein levels of IGFR, GRB2 and SHC1 in mammary lesions and tumors, which is in correlation with their respective RT-PCR data. Activation of AKT and ERK1/2 were up regulated in E+P treated mammary lesions and tumors. Molecular analysis of mTOR pathway proteins revealed increased phosphorylation of p70S6K and 4EBP1 in the hormone treated tumors indicating the activation of mTOR signaling. E+P treatment reduced the protein expression of BAX and increased BCL2 expression along with down regulation of active caspase 3 and 8. Together, these data demonstrate that ovarian hormones promote the lesions to mammary tumors by enhancing IGFR and Akt/mTOR signaling along with inhibition of apoptotic stimuli.  相似文献   

15.
The survival of spermatogonial stem cells in CBA and C3H mice after single and split-dose (24-hr interval) irradiation with fission neutrons and gamma rays was compared. The first doses of the fractionated regimes were either 150 rad (neutrons) or 600 rad (gamma). For both strains the neutron survival curves were exponential. The D0 value of stem cells in CBA decreased from 83 to 25 rad upon fractionation; that of C3H stem cells decreased only from 54 to 36 rad. The survival curves for gamma irradiation, which all showed shoulders, indicated that C3H stem cells had larger repair capacities than CBA stem cells. However, the most striking difference between the two strains in response to gamma radiation was in the slopes of the second-dose curves. Whereas C3H stem cells showed a small increase of the D0 upon fractionation (from 196 to 218 rad), CBA stem cells showed a marked decrease (from 243 to 148 rad). The decreases in D0 upon fractionation, observed in both strains with neutron irradiation and also with gamma irradiation in CBA, are most likely the result of recruitment or progression of radioresistant survivors to a more sensitive state of proliferation or cell cycle phase. It may be that the surviving stem cells in C3H mice are recruited less rapidly and synchronously into active cycle than in CBA mice. Thus, it appears that the strain differences may be quantitative, rather than qualitative.  相似文献   

16.
The biological behavior of 111In-labeled HPD has been investigated in tumor-bearing animals. Mice mammary adenocarcinomas and 7,12-dimethylbenz(a)anthracine induced breast tumors in Sprague-Dawley female rats were clearly visualized by 111In-HPD nuclear scintigraphy. Optimal scans were obtained after a 48 h delay. In normal and tumor-bearing animals, the highest uptake of 111In-HPD 72 h post-injection was found in the liver, the spleen and the kidneys. Depending on the size and the extent of necrosis, the uptake of 111In-HPD by malignant breast tumors varied from 2.5% injected dose (ID) (range 0.14–5.3% ID) in mice to 1% ID (range 0.22–8.1% ID) in rats. Benign breast tumor uptake of 111In-HPD was less that 1%ID. No significant amount of the radiopharmaceutical was found in pulmonary abscesses and abdominal cysts (< 0.1 % ID). Scintigrams of these infectious or inflammatory lesions were normal. Malignant tumor to blood, heart and lung ratios averaged 50:1, 10:1 and 3:1 respectively. Tumor to brain ratio ranged from 72 to 444:1.  相似文献   

17.
We evaluated the effect of WR-2721 [S-2-(3-aminopropylamino)-ethylphosphorothioic acid] and cysteamine (2-mercaptoethylamine) on the development of radiation-induced mammary tumors in rats. Pregnant rats were treated with WR-2721 or cysteamine 30 min prior to whole-body irradiation with gamma rays from a (60)Co source at a dose of 1.5 or 2.6 Gy. Additional pregnant rats were given saline and then exposed to gamma rays at a dose of 0, 1.5 or 2.6 Gy as a control. All rats were implanted with pellets of diethylstilbestrol, a tumor promoter, 1 month after termination of nursing and were observed for 1 year to detect palpable mammary tumors. No mammary tumors developed in the saline-injected nonirradiated rats. However, when rats were irradiated with 1.5 or 2. 6 Gy after saline treatment, the incidence of mammary tumors was high (71.4 and 92.3%, respectively). Administration of WR-2721 or cysteamine prior to irradiation with 1.5 Gy significantly decreased the tumor incidence (23.8 and 20.8%, respectively). Tumor prevention by either agent was less effective at the higher dose. The appearance of the first mammary tumor occurred later in rats treated with WR-2721 or cysteamine than in the control rats. An increasing rate of adenocarcinoma in the control group was observed with increasing dose from 1.5 Gy up to 2.6 Gy. However, the development of adenocarcinoma did not increase after pretreatment with WR-2721 or cysteamine in rats irradiated with 2.6 Gy. Many of the mammary tumors that developed in the control rats were of the ER(+)PgR(+) type. Administration of WR-2721 produced no tumors of the ER(+)PgR(+) type. Cysteamine treatment increased the development of ER-negative tumors. The serum concentration of progesterone was significantly higher in rats treated with WR-2721 or cysteamine than in the control rats. On the other hand, the estradiol-17beta concentration was reduced by treatment with WR-2721, but not significantly compared to the control. WR-2721 and cysteamine had no effect on the prolactin concentration of the irradiated rats. The results suggest that administration of WR-2721 or cysteamine prior to the irradiation has a potent preventive effect on theinitiation phase during mammary tumorigenesis.  相似文献   

18.
Different radiation dose patterns to the lung from inhaled beta-emitting radionuclides may influence the frequency and kind of biological effects. To determine the magnitude of this influence, groups of Beagle dogs were exposed to aerosols of 90Y, 91Y, 144Ce, or 90Sr in relatively insoluble particles and observed for their life spans. Different dose patterns were achieved by using these radionuclides having similar beta emissions and chemical form but having physical half-lives ranging from 2.6 days to 28 years. The range of initial lung burdens of radionuclides studied resulted in a range of biological effects from early deaths at the highest radiation doses to no discernible effects at the lowest doses. The effective half-lives of the four radionuclides in the lung ranged from 2.5 to 600 days. Within 1.5 years after exposure, some dogs died with radiation pneumonitis and pulmonary fibrosis. Between 1.5 and 10 years after exposure, 42 pulmonary carcinomas and 28 pulmonary sarcomas were observed in 163 dogs that died. Protracted irradiation of the lung from 90Sr or 144Ce resulted in a relatively high radiation dose and produced more total lung tumors but fewer lung tumors per rad than less protracted irradiation from 90Y or 91Y. At 10 years after inhalation exposure, the difference in risk per rad among the different dose patterns was a factor of 4 to 8, indicating that the different radiation dose patterns from inhaled beta emitters do influence lung tumor risk factors, at least at high (greater than 20,000 rad) doses to lung.  相似文献   

19.
Cytogenetic effects of X-rays and fission neutrons in female mice   总被引:6,自引:0,他引:6  
The induction by X-rays of chromosomal damage in oocytes was studied, while the genetic consequences of X- and neutron-induced damage in female mice were looked for by testing offspring for dominant lethality and semi-sterility. None out of 386 sons of hybrid females given 300 rad X-rays showed evidence of semi-sterility or translocation heterozygosity, but 9 out of 294 daughters were diagnosed as semi-sterile. At least 3 and probably 4 of these (1.4%) carried reciprocal translocations, 2 of which caused male sterility. Complete or partial loss of the X-chromosome may have been responsible for some of the other sermi-steriles. Examination of oocytes at metaphase-I during the first and third weeks after X-irradiation with 100 or 400 rad revealed both multivalents (some of the ring quadrivalent type) and fragments (mainly double). These were thought to arise mainly from chromatid intercchanges (both symmetrical and asymmetrical) and isochromatid intrachanges respectively. Since neither the proportion of asymmetrical interchanges nor the amount of hidden damage was known it was not thought possible to predict the magnitude of F1 effects from metaphase-I findings. The aberration frequency in oocytes rose with dose and (at the 400 rad level only) with time after irradiation, reaching a maximum of 10% multivalents and 22% fragments in the third week after 400 rad. The frequency of univalents showed no consistent trend, but chiasma counts decreased in the first week after 400 rad. The increase in levels of chromosomal damage with dose and time after irradiation was reflected in dominant lethal frequencies after the same radiation-conception intervals and doses of 0–400 rad. Induced post-implantation lethality was over twice as high in the third week after 200–400 rad than in the first. Pre-implantation loss also greatly increased in the third week after 300 or 400 rad; this was associated with increased non-fertilization of ova. No evidence for the induction of translocations in oogonia or resting oocytes by fast neutron irradiation was obtained, although there was evidence for X-chromosomal loss after 200 rad to oocytes. The relative biological effectiveness (RBE) for fission neutrons vs. X-rays with respect to dominant lethal induction in oocytes was found to vary with dose, but seamed to be around 1 at lower levels.  相似文献   

20.
An analysis of the literature shows a lack of data about basic biological parameters regarding cytogenetic dosimetry as applied to neutron fields, in the dose range below 50 rad. Human peripheral blood lymphocytes were exposed in vitro to a degraded fission neutron spectrum of mean energy 0.4 MeV. The dose-range was 0.2--50 rad delivered at a dose-rate of about 0.2 or 7 rad/min. The results were processed using a computer programme. Both experimental data for dicentric induction, and theoretical considerations indicate the first-order polynomial as the best fitting dose--response function. The implications of these results for cytogenetic dosimetry are discussed. A comparison with 250 kV X-ray data in the same range gives an r.b.e. of 18.5 +/- 3.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号