首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the luteinizing hormone (LH) secretion patterns in growing mithun (Bos frontalis), a semi-wild ruminant, six female mithuns (1 year old; BW: 145.5 kg) were maintained in a semi-intensive system. Plasma progesterone (P(4)) level was measured in twice-a-week samples collected for six weeks to assess ovarian status. This was followed by a frequent sampling period. Blood samples collected at 15 min intervals for 9 h were assayed for plasma LH. Luteinizing hormone patterns consisted of pulses of varying amplitudes. Luteinizing hormone pulses occurred at an average rate of 0.54/h ( approximately 5 pulses/9 h). The rate did not differ among mithuns. The mean plasma LH levels was correlated with body weight (r=0.82; p<0.05) and pulse amplitude (r=0.87; p<0.01). Neither the LH amplitude nor the frequency was affected by time (p>0.05). The mean plasma P(4) concentration was 0.37 ng/ml. In conclusion, we demonstrated a pulsatile nature of LH secretion in growing mithuns. In addition, the mean plasma LH level and LH amplitude were positively correlated with body weight. It appears that in contrast to cattle, five LH pulses per nine hours recorded in mithuns were not an indication of approaching puberty.  相似文献   

2.
Polycystic ovaries (PCO) develop in female rats within 4 weeks of an injection of estradiol valerate (EV). The final morphological transition from a noncystic to a cystic state occurs in the presence of estrous (control) mean serum gonadotropin concentrations, suggesting that gonadotropin patterns rather than mean concentrations are causal to PCO. We have examined plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) patterns in female rats at estrus and on days 5, 11, 16, and 21 following EV treatment. Estrous animals displayed large amplitude LH pulses of short duration, interspersed among frequent, low amplitude pulses of similar duration, and infrequent, broad-based LH episodes. Following EV treatment, there was a progressive decline in the frequency and magnitude of the large amplitude LH pulses, such that by day 16, they ceased altogether. Conversely, the frequency of the low amplitude pulses increased such that the total pulse frequency remained constant. The onset of this pattern coincides with the wave of atresia that precedes the emergence of cystic follicles. The pulsatile plasma pattern of FSH seen at estrus remained unaltered at all time intervals examined after EV treatment. We conclude that there is a specific LH pattern responsible for the generation and maintenance of the PCO condition.  相似文献   

3.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

4.
The aim of the present study was to investigate what, if any, diurnal changes occur in blood metabolites in relation to plasma growth hormone (GH) and feeding time among mithun (Bos frontalis), a semi-wild ruminant. Blood samples were collected at hourly intervals during a 24 h span from 6 mithun heifers (averaging 2.5 yr of age and averaging 230 kg in weight) that were fed twice a day at 11:00 and 16:00 h. Samples were assayed for plasma GH and blood metabolites, non-esterified fatty acids (NEFA), glucose, and alpha-amino nitrogen. The total sampling period was divided into a 1) postprandial (after meal) period (period I: 11:00 to 21:00 h) and 2) interprandial period (period II: 22:00 to 10:00 h) and also into night (20:00 to 05:00 h) and day (06:00 to 10:00 h) periods for statistical analysis. Plasma glucose and alpha-amino nitrogen levels increased (p<0.01), and plasma NEFA and GH decreased (p<0.01) after each meal. No diurnal rhythmicity was detected in plasma glucose or alpha-amino nitrogen levels. Interestingly, plasma NEFA and GH levels were higher (p<0.01) during the interprandial (period II) and night periods, indicating an energy deficit that occurred progressively during the interprandial period of nocturnal feed deprivation. In twice-daily-fed mithuns we conclude that: 1) plasma metabolites and GH exhibited a definite pattern of change with time of feeding; 2) concentrations of plasma NEFA were higher nocturnally due to an energy deficit and that GH levels were higher during the interprandial period after the second meal; 3) the interprandial period after the second feeding may be considered to constitute a short-term food deprivation; 4) the longer interprandial period of 19 h in this study between the second and subsequent morning meal may be changed into equally divided feedings to minimize the short-term energy deficit; and 5) blood sampling for blood metabolites in mithuns should be conducted at a fixed time of day with special emphasis on time of feeding.  相似文献   

5.
While chronic glucocorticoid treatment increases pituitary growth hormone (GH) content in rats and primates and increases pituitary GH release in response to growth hormone-releasing hormone (GHRH) in rats, it also inhibits somatic growth. We investigated these opposite actions in rats using the synthetic glucocorticoid dexamethasone. Seven days of dexamethasone treatment (40 micrograms/animal per day) did not alter the frequency of spontaneous GH pulses in conscious, freely-moving animals. The amplitude of the GH pulses in saline and dexamethasone-treated rats was different (P less than 0.01), the latter group having a higher incidence of GH levels less than 95 ng/ml, a lower incidence of GH levels between 96 and 251 ng/ml, and a higher incidence of GH values greater than 480 ng/ml. A 20 microgram/kg per day dose of dexamethasone was sufficient to significantly inhibit growth but was inadequate in enhancing the GH response to an acute injection of GHRH in anesthetized animals. These results support the concept that glucocorticoids exert their catabolic effects on somatic growth in peripheral tissues and not at the pituitary level.  相似文献   

6.
This experiment concerned the changing patterns in secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and growth hormone (GH) under conditions of food restriction and subsequent catch-up growth. Weanling male rats were given either restricted (4 g food/day) or unrestricted access to food until 60 days of age. At this age, food-restricted rats weighed only 25% as much as rats fed ad libitum. Food restriction resulted in a dramatic decrease in the frequency of LH and GH pulses, and in the amplitude of GH pulses. It also slightly but significantly decreased mean blood levels of FSH (which was not secreted in a pulsatile manner in 60-day-old controls fed ad libitum). When restricted rats were given unrestricted access to food, frequency of LH and GH pulses and mean levels of FSH increased significantly and simultaneously within 2 days in half of the animals. Only an additional 8-10% of their body weight decrement was recovered at this time. After 10 days of food restoration, when restricted rats still weighed 50% less than controls, their secretory patterns of all three hormones were not significantly different from those of controls. Thus, recovery of gonadotropin and GH secretion was relatively rapid. Except for the quantitatively lesser impact of food restriction on FSH secretion, there was no evidence of any priorities in the secretion of the three hormones. Under conditions of rapid catch-up growth, the secretory patterns of LH, FSH, and GH appeared to develop simultaneously.  相似文献   

7.
The aim of the present study was to verify whether or not plasma growth hormone (GH) concentrations are correlated with temperament in mithuns (Bos frontalis), a semiwild ruminant. Therefore, a total of 69 female mithuns from four different strains, viz., Arunachal, Nagaland, Mizoram, and Manipur, were divided into six age groups (Group I, 0-6 months; Group II, >6-12 months; Group III, >1-2 years; Group IV, >2-2.5 years; Group V, >2.5-3.0 years; Group VI, >3.0 years). Blood samples were collected weekly for 6 consecutive weeks and assayed for plasma GH. Temperament was scored on a 6-point scale, 6 were being very aggressive and 1 docile. Body weights of all animals were recorded once a week for 6 consecutive weeks GH concentrations and temperament scores were found to differ significantly between groups. Strain had significant effects on blood GH levels and temperament. Blood GH concentrations and temperament of Manipur mithuns were significantly higher than those of the other three strains within each group, for all groups. Across groups III to VI, blood GH levels and temperament among Nagaland, Mizoram, and Arunachal mithuns did not differ. Overall, the strain with the highest blood GH concentrations also had highest temperament scores. The Manipur strain had the highest blood GH levels and exhibited the most aggression (r = 0.95), and Arunachal mithuns, the lowest (r = 0.93). Temperament scores tended to decrease with increasing age for all four strains. Coefficients of correlation between blood GH and temperament among strains within each group, for all groups, were found to be significant. The highly positive correlation (r = 0.94) between blood GH concentrations and temperament for all animals, regardless of age and strain differences, clearly indicates the relationship between blood GH and temperament in mithuns. In conclusion, our results suggest that peripheral blood GH levels can influence temperament in mithuns.  相似文献   

8.
The aim of the present study was to investigate what, if any, diurnal changes occur in blood metabolites in relation to plasma growth hormone (GH) and feeding time among mithun (Bos frontalis), a semi‐wild ruminant. Blood samples were collected at hourly intervals during a 24 h span from 6 mithun heifers (averaging 2.5 yr of age and averaging 230 kg in weight) that were fed twice a day at 11:00 and 16:00 h. Samples were assayed for plasma GH and blood metabolites, non‐esterified fatty acids (NEFA), glucose, and alpha‐amino nitrogen. The total sampling period was divided into a 1) postprandial (after meal) period (period I: 11:00 to 21:00 h) and 2) interprandial period (period II: 22:00 to 10:00 h) and also into night (20:00 to 05:00 h) and day (06:00 to 10:00 h) periods for statistical analysis. Plasma glucose and alpha‐amino nitrogen levels increased (p<0.01), and plasma NEFA and GH decreased (p<0.01) after each meal. No diurnal rhythmicity was detected in plasma glucose or alpha‐amino nitrogen levels. Interestingly, plasma NEFA and GH levels were higher (p<0.01) during the interprandial (period II) and night periods, indicating an energy deficit that occurred progressively during the interprandial period of nocturnal feed deprivation. In twice‐daily‐fed mithuns we conclude that: 1) plasma metabolites and GH exhibited a definite pattern of change with time of feeding; 2) concentrations of plasma NEFA were higher nocturnally due to an energy deficit and that GH levels were higher during the interprandial period after the second meal; 3) the interprandial period after the second feeding may be considered to constitute a short‐term food deprivation; 4) the longer interprandial period of 19 h in this study between the second and subsequent morning meal may be changed into equally divided feedings to minimize the short‐term energy deficit; and 5) blood sampling for blood metabolites in mithuns should be conducted at a fixed time of day with special emphasis on time of feeding.  相似文献   

9.
The pituitary growth hormone (GH) responses during a 20-hour iv infusion of saline or human GH-releasing factor (hGRF-44) at 40 micrograms/h, followed by an iv bolus injection of hGRF at 2 micrograms/kg body weight, were studied in four normal adult men. During saline infusion only one or two pulses of plasma GH were observed. However, during hGRF infusion up to eight or ten pulses of GH were measured with an amplitude not different from that obtained during saline infusion. The mean +/- SEM integrated amount of GH secreted was 107 +/- 38.2 ng/ml.h in response to hGRF infusion, which was greater than the value of 25.4 +/- 3.5 ng/ml.h obtained during saline infusion. Plasma somatomedin-C also increased after hGRF infusion, but not after saline. After saline or hGRF infusion most of the subjects still responded to an iv bolus injection of the peptide (2 micrograms/kg). These results indicate that hGRF infusion augments GH secretion by increasing the number, but not the amplitude of GH pulses and that the infusion does not cause the pituitary somatotrophs to lose their capacity and ability to respond to hGRF subsequently.  相似文献   

10.
To test whether endogenous hypothalamic somatostatin (SRIH) fluctuations are playing a role in the generation of growth hormone (GH) pulses, continuous subcutaneous octreotide infusion (16 microg/h) was used to create constant supraphysiological somatostatinergic tone. Six healthy postmenopausal women (age 67 +/- 3 yr, body mass index 24.7 +/- 1.2 kg/m(2)) were studied during normal saline and octreotide infusion providing stable plasma octreotide levels of 2,567 +/- 37 pg/ml. Blood samples were obtained every 10 min for 24 h, and plasma GH was measured with a sensitive chemiluminometric assay. Octreotide infusion suppressed 24-h mean GH by 84 +/- 3% (P = 0.00026), GH pulse amplitude by 90 +/- 3% (P = 0.00031), and trough GH by 54 +/- 5% (P = 0.0012), whereas GH pulse frequency remained unchanged. The response of GH to GH-releasing hormone (GHRH) was not suppressed, and the GH response to GH-releasing peptide-6 (GHRP-6) was unaffected. We conclude that, in women, periodic declines in hypothalamic SRIH secretion are not the driving force of endogenous GH pulses, which are most likely due to episodic release of GHRH and/or the endogenous GHRP-like ligand.  相似文献   

11.
The objective of this study was to determine the effect of cysteamine hydrochloride (CSH) on growth hormone (GH) secretion in male swine. Twelve Poland China x Yorkshire boars, weighing 103.4 +/- 3.0 kg and fitted with indwelling jugular vein catheters, were individually penned in an environmentally controlled room. Boars received i.v. injections of either 0, 25, 50, or 75 mg CSH/kg body weight (BW) at h 0 (n = 3/treatment). Blood samples were collected every 15 min from h 0 to h 4. Serum concentrations of GH were determined by radioimmunoassay. There was an effect of treatment (P < .05) on mean GH concentrations. Mean GH concentrations (ng/ml) were 1.97 +/- .46, 2.24 +/- .59, .91 +/- .06, and .62 +/- .08 for boars receiving 0, 25, 50, and 75 mg CSH/kg BW, respectively. The dose of CSH-mean GH response had a linear (P < .01) component. Cysteamine hydrochloride at the 75 mg/kg BW dose decreased mean GH concentrations (P < .05) compared to the 0 and 25 mg/kg BW groups. The frequency and amplitude of GH pulses were similar (P > .1) among treatments. Overall, GH pulse amplitude was 2.35 +/- .58 ng/ml and GH pulse frequency was .75 +/- .07 pulses/h. Results from this experiment indicate that CSH suppresses circulating GH concentrations in a dose dependent fashion in boars.  相似文献   

12.
To facilitate research into the action of growth hormone (GH) in mithun (Bos frontalis), we standardized and validated a simple and highly sensitive enzyme immunoassay (EIA) for GH determination in mithun blood plasma on microtiter plates using biotin‐streptavidin amplification system and the second antibody coating technique. Biotin was coupled to GH and used to bridge between streptavidin‐peroxidase and immobilized antiserum in competitive assay. The EIA was carried out directly in 25 µl mithun plasma. The GH standards ranging from 0.25 ng/well/25 µl to 128 ng/well/25 µl were prepared in charcoal‐treated plasma collected from an aged (>10 years) senile mithun. The sensitivity of EIA procedure was 1.0 ng/ml plasma; the 50% relative binding sensitivity was seen at 36 ng/ml plasma. Plasma volumes for the EIA, namely 12.5 and 25 µl, did not influence the shape of standard curve even though a drop in the optical density (OD)450 observed with higher plasma volumes was due to higher inherent GH content in mithun plasma collected from an aged (>10 years) senile mithun. For the biological validation of assay, two mithuns were administered with synthetic bovine GH‐releasing factor (GRF; 10 µg/100 kg body weight; intravenous) and another two were administered sterile normal saline (controls). Jugular blood samples were collected at ?60, ?45, ?30, ?15, ?10, ?5, 0, 5, 10, 15, 30 min and thereafter at 15‐min intervals beginning 1 hour before GRF injection up to 8‐hr post treatment, and samples were assayed for plasma GH. In two animals, a peak of GH was recorded at 15 min of GRF administration, which confirms the biological validation of the EIA. Plasma GH estimated in blood samples collected for 6 consecutive weeks from two different age groups of mithun (Group I, age 0–3 months; Group II, age 3–4 yr) showed higher (P < 0.0001) mean plasma GH in younger than in adult mithuns and consequently higher growth rates in the younger group. A parallelism test conducted between a buffer standard curve of bovine GH and GH measured from serial dilution of mithun plasma containing high concentration of endogenous GH showed good parallelism with a standard curve. In conclusion, the EIA developed for GH determination in mithun blood plasma is sufficiently reliable, economic, and sensitive enough to estimate mithun GH in all physiologic variations. Zoo Biol 0:1–11, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

13.
The ontogenetic changes that occur in secretory patterns of growth hormone (GH), prolactin (Prl), luteinizing hormone (LH), and testosterone (T) in rams maintained in constant photoperiod were examined. Nine ram lambs were moved to individual pens in a controlled environment (12L: 12D cycle; 18-24 degrees C temperature) at 66 days of age. Blood samples were collected via indwelling cannulae at 15-min intervals for an 8-h period at 80, 136, 192, 248, and 304 days of age. Plasma concentrations of GH, Prl, LH, and T were quantitated and parameters of the secretory patterns determined. Mean concentration of GH tended to decline with age, probably because the amplitude of secretory peaks was significantly reduced with age. There were no age-associated changes in basal concentration of GH or incidence of GH peaks. There was an increase in Prl secretion (as estimated by mean concentration) at 136 and after 248 days of age. Significant age-associated changes occurred in all parameters of LH and T secretion. At the younger ages, testosterone concentrations were low and LH concentrations were elevated. At the older ages the relationship was reversed, with LH low and testosterone high. There were no significant correlations between frequency and magnitude of LH and T peaks. The significant correlations present among parameters of LH and T secretion were between basal concentration of LH and overall mean concentration and basal concentration of T. These results suggest that LH may not be the sole tropic stimulator of acute T secretion.  相似文献   

14.
Synthetic human pancreatic Growth Hormone-Releasing Factor (hpGRF) elevated the plasma concentration of growth hormone (GH) in young and adult domestic fowl. This in vivo effect of hpGRF appeared to be largely similar for both the 32 amino-acid (hpGRF 1-32) or 40 amino-acid (hpGRF 1-40) polypeptide, although the effect of hpGRF 1-32 was more prolonged than that of hpGRF 1-40 in adult domestic fowl. The increase in plasma GH concentrations following hpGRF administration (10 micrograms/kg) was somewhat greater in young than adult chickens (the increase in plasma concentration of GH being 230 ng/ml at 1 week old, 282 ng/ml at 6 week old, 241 ng/ml at 10 weeks and 150 ng/ml in adults). In the adult domestic fowl hpGRF stimulated a greater increase in the plasma concentration of GH than did thyrotropin-releasing hormone (TRH). However in the young chicks TRH was more active. The in vitro release of GH from dispersed chicken pituitary cells was elevated by hpGRF (1-32) and hpGRF (1-40).  相似文献   

15.
In the present study we report the effects of therapy with growth hormone-releasing factor (1-29)NH2 (GRF) on growth rate, plasma levels of insulin growth factor I (IGF-I) and growth hormone (GH) secretion in 11 children who were selected solely on the basis of their short stature and normal GH secretion on standard provocative tests. All children received GRF for 6 months (5 micrograms/kg body weight subcutaneously) each evening. The 24-hour GH secretory profile was studied before and after 6 months of treatment. Simultaneously, GH secretory responses to single intravenous bolus GRF (1.5 micrograms/kg body weight) were also studied before, during, and 6 months off therapy with GRF(1-29)NH2. Plasma levels of IGF-I were measured before, during (1, 2 and 6 months), and after 6 months off therapy with GRF. Statural growth was measured at 3-month intervals. The peak plasma GH level in response to GRF was 56.04 +/- (SD) 24.46 ng/ml before treatment, and similar results were found after therapy. The 24-hour GH secretory profile did not show differences before, during, and after treatment. Comparably, no differences were found in GH pulse frequency, pulse amplitude, pulse height, pulse increment, pulse area and total area before, and 6 months off therapy with GRF. The increments in serum IGF-I achieved were not significantly different at all intervals studied. All patients increased growth velocities (mean +/- SD, cm/year) in response to GRF therapy. Our results demonstrate that GRF administration was effective in accelerating growth velocity in 11 children without GH deficiency.  相似文献   

16.
Two experiments were conducted to test the working hypothesis that mean plasma concentrations of luteinizing hormone (LH) increase as a result of an increase in the frequency and amplitude of the pulsatile releases of LH in postpubertal boars after removal of gonadal steroid hormones by castration. It was further hypothesized that these changes in secretion of LH would be the result of changes in sensitivity of the pituitary to gonadotropin releasing hormone (GnRH). In Experiment 1, plasma LH was monitored in 10 postpubertal crossbred boars (13 to 14 mo old and weighing 159 +/- 6.0 kg) at 12-min intervals for 6 h before and 1 h after GnRH (375 ng/kg of body weight) on Days -1, 7, 14, 21 and 29 relative to castration. In Experiment 2, plasma LH was monitored in four castrated and five intact postpubertal boars (11 to 12 mo old and weighing 150 +/- 5.1 kg) after each of three doses of GnRH (94, 188 and 375 ng/kg) were administered to each animal. Sample collection occurred 5 wk after castration. Mean LH and frequency of pulsatile releases of LH increased as a result of castration (P<0.0001), with changes evident by Day 7 after castration. However, the amplitude of the LH pulses increased minimally after castration (P<0.10). The response to exogenous GnRH increased throughout Experiment 1 (P<0.0001), even though the amplitude of the pulsatile releases of LH (response to endogenous GnRH) did not change. Castrated animals in Experiment 2 had a greater response of LH to GnRH stimulation than intact boars (P<0.05). The dose-response curve of castrated animals was not parallel (P<0.001) to that of intact boars, and indicated that sensitivity of the pituitary to GnRH had increased in the absence of gonadal steroids. Thus, the hypotheses stated above can be accepted with the exception that castration may have a minimal effect on LH pulse amplitude. Based on the results of these experiments, we suggest that gonadal steroid hormones modulate both the size of releasable stores of LH and pituitary sensitivity to GnRH in boars.  相似文献   

17.
Growth hormone (GH) pulsatility requires periventricular-nuclear somatostatin(SRIF(PeV)), arcuate-nuclear (ArC) GH-releasing hormone (GHRH), and systemic GH autofeedback. However, no current formalism interlinks these regulatory loci in a manner that generates self-renewable GH dynamics. The latter must include in the adult rat 1) infrequent volleys of high-amplitude GH peaks in the male, 2) frequent discrete low-amplitude GH pulses in the female, 3) disruption of the male pattern by severing SRIF(PeV) outflow to ArC, 4) stimulation of GHRH and GH secretion by central nervous system delivery of SRIF, 5) inhibition of GH release by central exposure to GHRH, and 6) a reboundlike burst of GHRH secretion induced by stopping peripheral infusion of SRIF. The present study validates by computer-assisted simulations a simplified ensemble formulation that predicts each of the foregoing six outcomes, wherein 1) blood-borne GH stimulates SRIF(PeV) secretion after a long time latency, 2) SRIF(PeV) inhibits both pituitary GH and ArC GHRH release, 3) ArC GHRH and SRIF(ArC) oscillate reciprocally with brief time delay, and 4) SRIF(PeV) represses and disinhibits the putative GHRH-SRIF(ArC) oscillator. According to the present analytic construction, time-delayed feedforward and feedback signaling among SRIF(PeV), ArC GHRH, and SRIF(ArC) could endow the complex physiological patterns of GH secretion in the male and female.  相似文献   

18.
The objective of this study was to determine if alterations in dietary intake and(or) ovariectomy influence plasma concentrations of IGF-I, GH and LH in heifers. Cyclic heifers (n = 23) were individually fed for 10 wk either 1) 1.8% of body weight in dry matter per day (GAIN; n = 7) 2) 1.1% of body weight in dry matter per day (MAINT; n = 8); or 3) 0.7% of body weight in dry matter per day (LOSE; n = 8). After 10 wk of dietary treatment, heifers were ovariectomized 36 to 40 h following the second injection of prostaglandin F2alpha analog (2 injections 11 d apart). Heifers weighed 444 +/- 13, 387 +/- 8, and 349 +/- 9 kg in the GAIN, MAINT and LOSE groups, respectively, at the time of ovariectomy; the average daily weight gains during the 10-wk period were 0.96, 0.17 and -0.31 kg, respectively (P < 0.001), for the 3 groups. Blood plasma was collected for 6 h at 15-min intervals 1 d before and 2 wk after ovariectomy. The MAINT group of heifers had greater IGF-I concentrations than either the LOSE or GAIN groups; IGF-I decreased (P < 0.05) by 23 and 35% after ovariectomy in the MAINT and GAIN groups, respectively, but did not change (P > 0.10) in the LOSE groups. Dietary restriction tended to increase (P < 0.10) GH pulse frequency and mean GH. Ovariectomy had no effect (P > 0.10) on mean GH or GH pulse frequency but increased (P < 0.05) GH pulse amplitude in the GAIN groups. Dietary treatment had no effect (P > 0.10) on mean LH, or LH pulse amplitude and frequency. However, across dietary treatments, ovariectomy increased mean LH and LH pulse frequency but did not affect (P > 0.10) LH pulse amplitude. In summary, dietary restriction increased GH secretion while ovariectomy increased LH secretion. There appears to be a dichotomy of response between GH and IGF-I in the way heifers respond to dietary treatment and(or) ovariectomy.  相似文献   

19.
This study was performed to investigate the weaning-to-estrus interval (WEI) in primiparous and multiparous sows in relation to their weight and back-fat thickness changes and serum hormone imbalance (insulin, growth hormone, and cortisol) at the end of gestation and during lactation. Ten primiparous and ten multiparous Camborough sows, fourth to seventh parity, were used in this experiment. During gestation, daily food intake was 2.4 kg (sow commercial diet: 2.96 Mcal/kg, 16% crude protein) and during lactation all sows were fed on a wet commercial diet (3.34 Mcal/kg, 17% crude protein) ad libitum, three times per day. Blood samples were collected and back-fat thickness at the P(2) site were recorded at 6 days before and 2, 7, 14, 21 and 25 days after farrowing. Body weight was recorded on the same dates, except the date before farrowing. The WEI was also recorded. The average daily feed intake was different (P<0.05) between primiparous and multiparous sows during lactation (5.23 versus 5.72kg per day, respectively). There was a difference (P<0.05) between primiparous and multiparous sows in total percentage of back-fat thickness loss from the end of gestation until weaning (-20.18 and -9.03%, respectively). The total percentage of weight loss during lactation was slightly greater (P>0.05) in multiparous than primiparous sows. Weaning-to-estrus interval was greater (P<0.05) in the primiparous group when compared with the multiparous group (5.55 and 4.22 days, respectively). No differences were found in insulin, growth hormone (GH), and cortisol concentrations between parity groups, except on the 21st day of lactation, when GH was greater in primiparous sows. There was no correlation between percentage of total weight loss and WEI, or percentage of back-fat thickness loss (total or by periods) and WEI. There were positive correlations between GH serum concentration on the 14th and 21st days and the percentage of weight loss in the third week of lactation (r=0.46, P<0.04 and r=0.52, P<0.02, respectively), and between GH concentration on the 21st and on weaning days and WEI (r=0.54, P<0.02 and r=0.42, P<0.06, respectively). Our results indicate that the hormone change (imbalance) during lactation, mainly GH, seems to be a better parameter to explain the difference in WEI between primiparous and multiparous sows than change in body condition.  相似文献   

20.
Lactating goats and sheep were fitted with catheters in the external pudendal arteries supplying both mammary glands. Saline was infused continuously into one artery whereas the other artery received continuous infusions, over successive 4-day periods, of either saline or growth hormone (GH)-doses increasing twofold between successive periods from 100 to 400 micrograms/day in goats and 400 to 3200 micrograms/day in sheep. Local infusion of GH at up to 1600 micrograms/day in sheep did not affect milk yield or composition nor peripheral plasma concentrations of GH, insulin, glucose, urea and non-esterified fatty acids (NEFA). Infusion of GH at 3200 micrograms/day in sheep increased peripheral plasma concentrations of GH, tended to increase milk yield and peripheral plasma NEFA but there were no changes in peripheral plasma insulin, glucose and urea. It is concluded that GH does not exert direct effects on the mammary glands of sheep and goats in situations where the hormone is administered over short periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号