首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Eukaryotic proteins containing a CAAX (A is aliphatic amino acid) C-terminal tetrapeptide sequence generally undergo a lipid modification, the addition of a prenyl group. Proteins that are modified by prenylation, such as Ras GTPases, can be subsequently modified by a proteolytic event that removes a C-terminal tripeptide (AAX). Two distinct proteases have been identified that are involved in the CAAX proteolytic step, FACE-1/Ste24 and FACE-2/Rce1. These proteases have different enzymatic properties, substrate specificities, and biological functions. However, a proposal has been made that plants lack a FACE-2/Rce1-type protease. Here, we describe the isolation of a cDNA from Arabidopsis thaliana that encodes a 311-aa protein with characteristics that are similar to the FACE-2/Rce1 group of enzymes. Northern blot analysis demonstrates widespread expression of this gene in plant tissues. Heterologous expression of the A. thaliana cDNA in yeast restores CAAX proteolytic activity to yeast lacking native CAAX proteases. The recombinant protein produced in this system displays an in vivo substrate specificity profile distinct from AtSte24 and cleaves a farnesylated CAAX tetrapeptide in vitro. These results provide evidence for the existence of a previously unsuspected plant FACE-2/Rce1 ortholog and support the evolutionary conservation of dual CAAX proteolytic systems in eukaryotes.  相似文献   

2.
Créchet JB  Cool RH  Jacquet E  Lallemand JY 《Biochemistry》2003,42(50):14903-14912
Ras1p and Ras2p, from Saccharomyces cerevisiae, are GTP-binding proteins that are essential elements in the signaling cascade leading to the activation of adenylyl cyclase. To overcome proteolytic activities that have hampered biochemical studies of Ras1p so far, its gene was genetically modified after which full-length Ras1p could be obtained. The interaction of farnesylated and unprenylated Ras1p with guanine nucleotides, guanine nucleotide exchange factors, GTPase activating proteins, and adenylyl cyclase was compared to Ras2p and human Ha-Ras interactions. Farnesylation of Ras proteins was demonstrated to be a prerequisite for membrane-bound guanine nucleotide exchange factor dependent formation of Ras-GTP complexes, and for efficient Ras-mediated adenylyl cyclase activation. To relate observed functional deviations with sequence differences between Ras1p and Ras2p, which reside almost exclusively within the hypervariable region, truncated versions and chimaeras of the Ras proteins were made. The characteristics of these constructs point to the presence of the hypervariable region of yeast Ras proteins for an efficient activation of adenylyl cyclase. The importance of the latter was confirmed as inhibition of the activation of adenylyl cyclase by an isolated farnesylated hypervariable region of Ras2p could be shown. This strongly suggests that the hypervariable region of Ras proteins can interact directly with adenylyl cyclase.  相似文献   

3.
Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.  相似文献   

4.
Little is known about the enzyme(s) required for the endoproteolytic processing of mammalian Ras proteins. We identified a mouse gene (designated Rce1) that shares sequence homology with a yeast gene (RCE1) implicated in the proteolytic processing of Ras2p. To define the role of Rce1 in mammalian Ras processing, we generated and analyzed Rce1-deficient mice. Rce1 deficiency was lethal late in embryonic development (after embryonic day 15.5). Multiple lines of evidence revealed that Rce1-deficient embryos and cells lacked the ability to endoproteolytically process Ras proteins. First, Ras proteins from Rce1-deficient cells migrated more slowly on SDS-polyacrylamide gels than Ras proteins from wild-type embryos and fibroblasts. Second, metabolic labeling of Rce1-deficient cells revealed that the Ras proteins were not carboxymethylated. Finally, membranes from Rce1-deficient fibroblasts lacked the capacity to proteolytically process farnesylated Ha-Ras, N-Ras, and Ki-Ras or geranylgeranylated Ki-Ras. The processing of two other prenylated proteins, the farnesylated Ggamma1 subunit of transducin and geranylgeranylated Rap1B, was also blocked. The absence of endoproteolytic processing and carboxymethylation caused Ras proteins to be mislocalized within cells. These studies indicate that Rce1 is responsible for the endoproteolytic processing of the Ras proteins in mammals and suggest a broad role for this gene in processing other prenylated CAAX proteins.  相似文献   

5.
The correct functioning of Ras proteins requires post-translational modification of the GTP hydrolases (GTPases). These modifications provide hydrophobic moieties that lead to the attachment of Ras to the inner side of the plasma membrane. In this study we investigated the role of Ras processing in the interaction with various putative Ras-effector proteins. We describe a specific, GTP-independent interaction between post-translationally modified Ha- and Ki-Ras4B and the G-protein responsive phosphoinositide 3-kinase p110gamma. Our data demonstrate that post-translational processing increases markedly the binding of Ras to p110gamma in vitro and in Sf9 cells, whereas the interaction with p110alpha is unaffected under the same conditions. Using in vitro farnesylated Ras, we show that farnesylation of Ras is sufficient to produce this effect. The complex of p110gamma and farnesylated RasGTP exhibits a reduced dissociation rate leading to the efficient shielding of the GTPase from GTPase activating protein (GAP) action. Moreover, Ras processing affects the dissociation rate of the RasGTP complex with the Ras binding domain (RBD) of Raf-1, indicating that processing induces alterations in the conformation of RasGTP. The results suggest a direct interaction between a moiety present only on fully processed or farnesylated Ras and the putative target protein p110gamma.  相似文献   

6.
Eukaryotic proteins with carboxyl-terminal CaaX motifs undergo three post-translational processing reactions-protein prenylation, endoproteolysis, and carboxymethylation. Two genes in yeast encoding CaaX endoproteases, AFC1 and RCE1, have been identified. Rce1p is solely responsible for proteolysis of yeast Ras proteins. When proteolysis is blocked, plasma membrane localization of Ras2p is impaired. The mislocalization of undermodified Ras in the cell suggests that Rce1p is an attractive target for cancer therapeutics. Homologous expression of plasmid-encoded Saccharomyces cerevisiae RCE1 under the control of the GAL1 promoter gave a 370-fold increase in endoprotease activity over an uninduced control. Yeast Rce1p was detected by Western blotting with a yRce1p antibody or with an anti-myc antibody to Rce1p bearing a C-terminal myc-epitope. Membrane preparations were examined for their sensitivity to a variety of protease inhibitors, metal ion chelators, and heavy metals. The enzyme was sensitive to cysteine protease inhibitors, Zn(2+), and Ni(2+). The substrate selectivity of yRce1p was determined for a variety of prenylated CaaX peptides including farnesylated and geranylgeranylated forms of human Ha-Ras, Ki-Ras, N-Ras, and yeast Ras2p, a-mating factor, and Rho2p. Six site-directed mutants of conserved polar and ionic amino acids in yRce1p were prepared. Four of the mutants, H194A, E156A, C251A, and H248A, were inactive. Results from the protease inhibition studies and the site-directed mutagenesis suggest that Rce1p is a cysteine protease.  相似文献   

7.
Pharmacologic approaches to studying palmitoylation are limited by the lack of specific inhibitors. Recently, screens have revealed five chemical classes of small molecules that inhibit cellular processes associated with palmitoylation (Ducker, C. E., L. K. Griffel, R. A. Smith, S. N. Keller, Y. Zhuang, Z. Xia, J. D. Diller, and C. D. Smith. 2006. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5: 1647-1659). Compounds that selectively inhibited palmitoylation of N-myristoylated vs. farnesylated peptides were identified in assays of palmitoyltransferase activity using cell membranes. Palmitoylation is catalyzed by a family of enzymes that share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain. In this study, we evaluated the ability of these inhibitors to reduce DHHC-mediated palmitoylation using purified enzymes and protein substrates. Human DHHC2 and yeast Pfa3 were assayed with their respective N-myristoylated substrates, Lck and Vac8. Human DHHC9/GCP16 and yeast Erf2/Erf4 were tested using farnesylated Ras proteins. Surprisingly, all four enzymes showed a similar profile of inhibition. Only one of the novel compounds, 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one [Compound V (CV)], and 2-bromopalmitate (2BP) inhibited the palmitoyltransferase activity of all DHHC proteins tested. Hence, the reported potency and selectivity of these compounds were not recapitulated with purified enzymes and their cognate lipidated substrates. Further characterization revealed both compounds blocked DHHC enzyme autoacylation and displayed slow, time-dependent inhibition but differed with respect to reversibility. Inhibition of palmitoyltransferase activity by CV was reversible, whereas 2BP inhibition was irreversible.  相似文献   

8.
Rheb proteins represent a novel and unique family of the Ras superfamily GTP-binding proteins that is conserved from yeast to human. Biochemical studies establish that they bind and hydrolyze GTP. Molecular modeling studies reveal a few structural differences between Rheb and Ras, which may suggest that residues involved in biochemical activities differ between the two G-proteins. The function of Rheb has been studied in a number of organisms that point to the involvement of Rheb in cell growth and cell cycle progression. In addition, studies in fungi suggest that Rheb is involved in arginine uptake. Further studies in Drosophila and mammalian cells have shown that the effects of Rheb on growth and cell cycle progression are mediated by the effect on the insulin/TOR/S6K signaling pathway. These studies have also shown that a complex consisting of the tuberous sclerosis gene products, Tsc1/Tsc2, serves as a GTPase activating protein (GAP) for Rheb, implying Rheb's role in this genetic disorder. Finally, Rheb proteins have been shown to be farnesylated and small molecule inhibitors of protein farnesyltransferase can block the ability of Rheb to activate the TOR/S6K signaling.  相似文献   

9.
Park D  Pandey SK  Maksimova E  Kole S  Bernier M 《Biochemistry》2000,39(41):12513-12521
CHO cells expressing the human insulin receptors (IR) were used to evaluate the effect of the potent farnesyltransferase inhibitor, manumycin, on insulin antiapoptotic function. Cell treatment with manumycin blocked insulin's ability to suppress pro-apoptotic caspase-3 activity which led to time-dependent proteolytic cleavage of two nuclear target proteins. The Raf-1/MEK/ERK cascade and the serine/threonine protein kinase Akt are two survival pathways that may be activated in response to insulin. We tested the hypothesis that inhibition of farnesylated Ras was causally related to manumycin-induced apoptosis and showed that the response to manumycin was found to be independent of K-Ras function because membrane association and activation of endogenous K-Ras proteins in terms of GTP loading and ERK activation were unabated following treatment with manumycin. Moreover, blocking p21Ras/Raf-1/MEK/ERK cascade by the expression of a transdominant inhibitory mSOS1 mutant in CHO-IR cells kept cells sensitive to the antiapoptotic action of insulin. Insulin-dependent activation of Akt was blocked by 4 h treatment with manumycin (P < 0.01), a kinetic too rapid to be explained by Ras inhibition. This study suggests that the depletion of short-lived farnesylated proteins by manumycin suppresses the antiapoptotic action of insulin at least in part by disrupting Akt activation but not that of the K-Ras/Raf-1/ERK-dependent cascade.  相似文献   

10.
We have identified a human Rho protein, RhoE, which has unusual structural and biochemical properties that suggest a novel mechanism of regulation. Within a region that is highly conserved among small GTPases, RhoE contains amino acid differences specifically at three positions that confer oncogenicity to Ras (12, 59, and 61). As predicted by these substitutions, which impair GTP hydrolysis in Ras, RhoE binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins. Replacing all three positions in RhoE with conventional amino acids completely restores GTPase activity. In vivo, RhoE is found exclusively in the GTP-bound form, suggesting that unlike previously characterized small GTPases, RhoE may be normally maintained in an activated state. Thus, amino acid changes in Ras that are selected during tumorigenesis have evolved naturally in this Rho protein and have similar consequences for catalytic function. All previously described Rho family proteins are modified by geranylgeranylation, a lipid attachment required for proper membrane localization. In contrast, the carboxy-terminal sequence of RhoE predicts that, like Ras proteins, RhoE is normally farnesylated. Indeed, we have found that RhoE in farnesylated in vivo and that this modification is required for association with the plasma membrane and with an unidentified cellular structure that may play a role in adhesion. Thus, two unusual structural features of this novel Rho protein suggest a striking evolutionary divergence from the Rho family of GTPases.  相似文献   

11.
Ras proteins from Saccharomyces cerevisiae differ from mammalian Ha-Ras in their extended C-terminal hypervariable region. We have analyzed the function of this region and the effect of its farnesylation with respect to the action of the GDP/GTP exchange factors (GEFs) Cdc25p and Sdc25p and the target adenylyl cyclase. Whereas Ras2p farnesylation had no effect on the interaction with purified GEFs from the Cdc25 family, this modification became a strict requirement for stimulation of the nucleotide exchange on Ras using reconstituted cell-free systems with GEFs bound to the cell membrane. Determination of GEF effects showed that in cell membrane the Cdc25p dependent activity on Ras2p was predominant over that of Sdc25p. In contrast to full-length GEFs, a membrane-bound C-terminal region containing the catalytic domain of Cdc25p was still able to react productively with unfarnesylated Ras2p. These results indicate that in membrane-bound full-length GEF the N-terminal moiety regulates the interaction between catalytic domain and farnesylated Ras2p.GDP. Differently from GEF, full activation of adenylyl cyclase did not require farnesylation of Ras2p.GTP, even if this step of maturation was found to facilitate the interaction. The use of Ha-Ras/Ras2p chimaeras of different length emphasized the key role of the hypervariable region of Ras2p in inducing maximum activation of adenylyl cyclase and for a productive interaction with membrane-bound GEF.  相似文献   

12.
Ras monomeric GTPases are pivotal to many core cellular processes such as proliferation and differentiation. The post-translational prenylation of Ras with a farnesyl or a geranylgeranyl moiety is thought to be critical for its membrane binding and consequent signaling activity. Inhibitors of Ras prenylation have an anti-proliferative effect in some Ras-transformed cells. We present a study of the effects of prenylation inhibitors on endogenous, wild-type Ras in three renal cell types, namely primary adult human renal fibroblasts, primary adult human mesangial cells, and a primate renal fibroblast cell line (Vero cells). We have previously demonstrated that Ras is necessary for normal proliferation in these cells. Here we show that Ras is farnesylated and not geranylgeranylated in all three cell types. Furthermore, inhibiting Ras farnesylation has no effect on cell proliferation or Ras activation. Although inhibiting geranylgeranylation in these cells does inhibit proliferation, this is through an Ras-independent mechanism. Non-prenylated Ras is able to localize to the plasma membrane, bind Raf when cells are stimulated by epidermal growth factor or platelet-derived growth factor, and activate the Ras downstream effectors mitogen-activated protein kinase and phosphotidylinositol 3-kinase. We conclude that in wild-type cells, endogenous Ras does not need to be prenylated to be active.  相似文献   

13.
H-, N-, and K-Ras are isoforms of Ras proteins, which undergo different lipid modifications at the C terminus. These post-translational events make possible the association of Ras proteins both with the inner plasma membrane and to the cytosolic surface of endoplasmic reticulum and Golgi complex, which is also required for the proper function of these proteins. To better characterize the intracellular distribution and sorting of Ras proteins, constructs were engineered to express the C-terminal domain of H- and K-Ras fused to variants of green fluorescent protein. Using confocal microscopy, we found in CHO-K1 cells that H-Ras, which is palmitoylated and farnesylated, localized at the recycling endosome in addition to the inner leaflet of the plasma membrane. In contrast, K-Ras, which is farnesylated and nonpalmitoylated, mainly localized at the plasma membrane. Moreover, we demonstrate that sorting signals of H- and K-Ras are contained within the C-terminal domain of these proteins and that palmitoylation on this region of H-Ras might operate as a dominant sorting signal for proper subcellular localization of this protein in CHO-K1 cells. Using selective photobleaching techniques, we demonstrate the dynamic nature of H-Ras trafficking to the recycling endosome from plasma membrane. We also provide evidence that Rab5 and Rab11 activities are required for proper delivery of H-Ras to the endocytic recycling compartment. Using a chimera containing the Ras binding domain of c-Raf-1 fused to a fluorescent protein, we found that a pool of GTP-bound H-Ras localized on membranes from Rab11-positive recycling endosome after serum stimulation. These results suggest that H-Ras present in membranes of the recycling endosome might be activating signal cascades essential for the dynamic and function of the organelle.  相似文献   

14.
The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC(50) values of these 9 compounds were in the low micromolar range for both yeast (6-35 microM) and human Rce1p (0.4-46 microM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors.  相似文献   

15.
The CAAX motif at the C terminus of most monomeric GTPases is required for membrane targeting because it signals for a series of three posttranslational modifications that include isoprenylation, endoproteolytic release of the C-terminal- AAX amino acids, and carboxyl methylation of the newly exposed isoprenylcysteine. The individual contributions of these modifications to protein trafficking and function are unknown. To address this issue, we performed a series of experiments with mouse embryonic fibroblasts (MEFs) lacking Rce1 (responsible for removal of the -AAX sequence) or Icmt (responsible for carboxyl methylation of the isoprenylcysteine). In MEFs lacking Rce1 or Icmt, farnesylated Ras proteins were mislocalized. In contrast, the intracellular localizations of geranylgeranylated Rho GTPases were not perturbed. Consistent with the latter finding, RhoGDI binding and actin remodeling were normal in Rce1- and Icmt-deficient cells. Swapping geranylgeranylation for farnesylation on Ras proteins or vice versa on Rho proteins reversed the differential sensitivities to Rce1 and Icmt deficiency. These results suggest that postprenylation CAAX processing is required for proper localization of farnesylated Ras but not geranygeranylated Rho proteins.  相似文献   

16.
C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.  相似文献   

17.
Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  相似文献   

18.
Lipidated Rho and Rab GTP-binding proteins are transported between membranes in complex with solubilizing factors called 'guanine nucleotide dissociation inhibitors' (GDIs). Unloading from GDIs using GDI displacement factors (GDFs) has been proposed but remains mechanistically elusive. PDEδ is a putative solubilizing factor for several prenylated Ras-subfamily proteins. Here we report the structure of fully modified farnesylated Rheb-GDP in complex with PDEδ. The structure explains the nucleotide-independent binding of Rheb to PDEδ and the relaxed specificity of PDEδ. We demonstrate that the G proteins Arl2 and Arl3 act in a GTP-dependent manner as allosteric release factors for farnesylated cargo. We thus describe a new transport system for farnesylated G proteins involving a GDI-like molecule and an unequivocal GDF. Considering the importance of PDEδ for proper Ras and Rheb signaling, this study is instrumental in developing a new target for anticancer therapy.  相似文献   

19.
Geranylgeranyltransferase I inhibitors (GGTIs) are presently undergoing advanced preclinical studies and have been shown to disrupt oncogenic and tumor survival pathways, to inhibit anchorage-dependent and -independent growth, and to induce apoptosis. However, the geranylgeranylated proteins that are targeted by GGTIs to induce these effects are not known. Here we provide evidence that the Ras-like small GTPases RalA and RalB are exclusively geranylgeranylated and that inhibition of their geranylgeranylation mediates, at least in part, the effects of GGTIs on anchorage-dependent and -independent growth and tumor apoptosis. To this end, we have created the corresponding carboxyl-terminal mutants that are exclusively farnesylated and verified that they retain the subcellular localization and signaling activities of the wild-type geranylgeranylated proteins and that Ral GTPases do not undergo alternative prenylation in response to GGTI treatment. By expressing farnesylated, GGTI-resistant RalA and RalB in Cos7 cells and human pancreatic MiaPaCa2 cancer cells followed by GGTI-2417 treatment, we demonstrated that farnesylated RalB, but not RalA, confers resistance to the proapoptotic and anti-anchorage-dependent growth effects of GGTI-2417. Conversely, farnesylated RalA but not RalB expression renders MiaPaCa2 cells less sensitive to inhibition of anchorage-independent growth. Furthermore, farnesylated RalB, but not RalA, inhibits the ability of GGTI-2417 to suppress survivin and induce p27Kip1 protein levels. We conclude that RalA and RalB are important, functionally distinct targets for GGTI-mediated tumor apoptosis and growth inhibition.  相似文献   

20.
Protein prenylation is a post translational modification that is indispensable for Ras–Rho mediated tumorigenesis. In mammals, three enzymes namely protein farnesyltransferase (FTase), geranylgeranyl transferase1 (GGTase1), and geranylgeranyl transferase2 (GGTase2) were found to be involved in this process. Usually proteins of Ras family will be farnesylated by FTase, Rho family will be geranylgeranylated by GGTase1. GGTase2 is exclusive for geranylgeranylating Rab protein family. FTase inhibitors such as FTI- 277 are potent anti-cancer agents in vitro. In vivo, mutated Ras proteins can either improve their affinity for FTase active site or undergo geranylgeranylation which confers resistance and no activity of FTase inhibitors. This led to the development of GGTase1 inhibitors. A well-defined 3-D structure of human GGTase1 protein is lacking which impairs its in silico and rational designing of inhibitors. A 3-D structure of human GGTase1 was constructed based on primary sequence available and homology modeling to which pubchem molecules library was virtually screened through AutoDock Vina. Our studies show that natural compounds Camptothecin (-8.2 Kcal/mol), Curcumin (-7.3 Kcal/mol) have higher binding affinities to GGTase-1 than that of established peptidomimetic GGTase-1 inhibitors such as GGTI-297 (-7.5 Kcal/mol), GGTI-298 (-7.5 Kcal/mol), CHEMBL525185 (-7.2 Kcal/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号