首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemoglobin deficit: an inherited hypochromic anemia in the mouse   总被引:5,自引:0,他引:5  
The character and pathogenesis of hemoglobin deficit (gene symbol, hbd), an autosomal recessive trait in the mouse, were studied. The main hematological features of hemoglobin deficit are anemia, red cell hypochromia and microcytosis, and reticulocytosis. The absence of raised fecal urobilinogen excretion and frank hyperbilirubinemia and bilirubinuria suggests that excess hemolysis is not the primary cause of the anemia. The raised plasma iron concentration and the failure of the anemia to respond to parenteral iron treatment indicate that the anemia is not due to iron deficiency. The absence of siderocytes and sideroblasts suggests that anemia is probably not due to ferrochelatase deficiency. Thalassemia is excluded by the finding of balanced reticulocyte globin chain synthesis. The markedly elevated levels of free red cell protoporphyrin taken together with the other findings already noted suggest that the anemia of hemoglobin deficit is due to a defect in the erythroid cell iron procurement mechanisms leading in turn to diminished heme and hemoglobin synthesis.  相似文献   

2.
The light and electronmicroscopic representation of non-haemiron in the bone-marrow provides the unique opportunity of extensively evaluating the iron metabolism. In the bone-marrow, macrophages represent the physiological place of iron storage. The iron in the cytoplasma is stored in them in the form of free ferritin molecules and lysomally as aggregated ferritin and/or haemosiderin in siderosomes. In an equal iron balance and unimpaired internal iron exchange only erythroblasts (sideroblasts) and erythrocytes (siderocytes) of the bone-marrow besides macrophages possess siderosomes. In addition to this physiological or orthotopic iron storage a heterotopic iron storage can be observed under pathological conditions, particularly with iron overloading of the organism, in the endothelial cells of sinusoids and plasma cells. In detail, the patterns of iron storage in the bone-marrow are described in the different stages of iron deficiency, disturbance of iron utilization in chronically inflammatory processes or tumour diseases, condition after intravenous iron administration, transfusion siderosis, hereditary haemochromatosis and sideroblastic anaemia.  相似文献   

3.
A study was done with 27 patients who met the following criteria: (1) anemia, (2) cellular bone marrow not diagnostic of leukemia, (3) absence of underlying disease that could account for the hematologic abnormalities at time of initial study and (4) absence of iron, B12 or folate deficiency.Of the 27 patients, 13 had ringed sideroblasts and 14 did not. Eleven patients received corticosteroids, 18 received folate, 23 pyridoxine and 12 androgens. Two partial responses occurred in the sideroblastic group and were attributed to androgen therapy in one patient and pyridoxine therapy in the other. In the nonsideroblastic group, two partial responses occurred which were attributed to prednisone therapy. Transfusions were required in 23 patients. Leukemia developed in six patients.It is concluded that currently used treatments have little effect on refractory anemia and that in most patients continuing transfusions are required. In a small percentage of patients, there is transformation to leukemia.  相似文献   

4.
X-linked sideroblastic anemia is a genetic disorder characterized by a hypochromic microcytic anemia of variable intensity with the presence of ring sideroblasts in the bone marrow of the patients. Two different mutations have been reported in the ALAS2 gene in patients with this diseae. We have studied a large kindred with a pyridoxine-sensitive form of X-linked sideroblastic anemia. Sequencing amplified cDNA of the proband revealed a guanine-to-adenine change at nucleotide 871 of the coding sequence (exon 7 of the gene). This results in a glycine to serine substitution that is responsible for a marked decrease in the enzymatic activity of the mutated protein. A polymerase chain reaction assay demonstrated the presence of the same mutation in three affected males and two female carriers in the kindred. The carrier status was excluded in eight females at risk. Early detection of the mutant allele in family members may thus be important for the prevention of anemia in males and of iron overload both in affected males and carrier females.  相似文献   

5.
Multiple mechanisms for hereditary sideroblastic anemia.   总被引:1,自引:0,他引:1  
Hereditary sideroblastic anemia (HSA) is a heterogeneous group of inherited anemic disorders which is characterized by the presence of ringed sideroblasts in the bone marrow, microcytic hypochromic anemia and typically its X-linked inheritance in patients. It has been shown that a deficiency of the erythroid-specific delta-aminolevulinate synthase (ALAS-E) activity is responsible for pyridoxine-responsive HSA in many patients, however, the pathogenesis of other types of HSA remains still unknown. In this article, recent evidence suggesting multiple causes for HSA is summarized and discussed.  相似文献   

6.
Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.  相似文献   

7.
The present study was designed to investigate the effects of nickel chloride on dietary iron deficiency in rats. The degree of iron deficiency was relatively moderate, but a more generalized anemia occurred in iron deficiency, in absence of nickel chloride. Moderate iron deficiency anemia induced increased lactate-dehydrogenase activity of serum and bone marrow, perhaps related to the decreased production of energy by oxidative means. Nickel chloride, perhaps for its ability to change iron absorption, for the maintenance of bone marrow metabolism and for to increase ceruloplasmin activity, inhibited the alteration on hemoglobin synthesis. Furthermore, nickel chloride possibly for its action on copper content and Cu-Zn superoxide-dismutase activity, inhibits the shortening of the red cell life span, caused by superoxide radicals.  相似文献   

8.

Introduction

Platelet counts exceeding 1.000 × 103/μl are usually considered secondary to another cause, particularly to chronic myeloproliferative disease (CMPD). Reactive thrombocytosis due to iron deficiency rarely exceeds platelet counts of 700 × 103/μl.

Case presentation

Here we report the case of a young woman presenting with clinical signs of severe anemia. Laboratory findings confirmed an iron-deficiency anemia associated with severe thrombocytosis of 1703 × 103/μl. Macroscopic gastrointestinal and genitourinary tract bleeding was excluded. The excessive elevation of platelets, slightly elevated lactate dehydrogenase and slightly elevated leukocytes along with the absence of other inflammation parameters raised the suspicion of an underlying hematological disease. However, bone marrow evaluation could not prove the suspected diagnosis of a CMPD, especially essential thrombocythemia (ET). In the further clinical course the platelet count returned to normal after raising the hemoglobin to a level close to normal range with erythrocyte transfusion, and normalization of serum iron and decline of erythropoietin. Finally, following small bowel biopsy, despite the absence of typical clinical signs, celiac disease was diagnosed. After discharge from hospital the patient was commenced on a gluten-free diet and her hemoglobin almost completely normalized in the further follow-up period.

Conclusion

This case illustrates the rare constellation of an extreme thrombocytosis most likely secondary to iron deficiency due to celiac disease. This represents, to the best of the authors' knowledge, the highest reported platelet count coincident with iron deficiency. A potential mechanism for the association of iron-deficiency anemia and thrombocytosis is discussed. Even in the presence of 'atypically' high platelets one should consider the possibility of reactive thrombocytosis. Extreme thrombocytosis could emerge in the case of iron deficiency secondary to celiac disease.
  相似文献   

9.
Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells.  相似文献   

10.
Iron absorption is under delicate control and the level of absorption is adjusted to comply with the body''s need for iron. To measure the intestinal setting for iron absorption, and thereby indirectly assess body iron requirements, cobaltous chloride labelled with 57Co or 60Co was given by mouth and the percentage of the test dose excreted in the urine in 24 hours was measured in a gamma counter. Seventeen control subjects with normal iron stores excreted 18% (9-23%) of the dose. Increased excretion, 31% (23-42%), was found in 10 patients with iron deficiency anemia and in 15 patients with depleted iron stores in the absence of anemia. In contrast, 12 patients with anemia due to causes other than iron deficiency excreted amounts of radiocobalt within the normal control range. In patients with iron deficiency, replenishment of iron stores by either oral or parenteral iron caused the previously high results to return to normal.Excretion of the test dose was normal in portal cirrhosis with normal iron stores but it was markedly increased in patients with cirrhosis complicated by either iron deficiency or endogenous iron overload. It was also raised in primary hemochromatosis. Excretion of the dose was reduced in gluten-sensitive enteropathy. Gastrointestinal surgery and inflammatory disease of the lower small intestine had no effect on the results except that some patients with steatorrhea had diminished excretion.The cobalt excretion test provides the clinician with a tool for the assessment of iron absorption, the detection of a reduction in body iron stores below the level that is normal for the subject in question, the differentiation of iron deficiency anemia from anemia due to other causes, and the investigation of patients with iron-loading disorders.  相似文献   

11.
Hepcidin has emerged as the key hormone in the regulation of iron balance and recycling. Elevated levels increase iron in macrophages and inhibit gastrointestinal iron uptake. The physiology of hepcidin suggests an additional mechanism by which iron depletion could protect against atherosclerotic lesion progression. Without hepcidin, macrophages retain less iron. Very low hepcidin levels occur in iron deficiency anemia and also in homozygous hemochromatosis. There is defective retention of iron in macrophages in hemochromatosis and also evidently no increase in atherosclerosis in this disorder. In normal subjects with intact hepcidin responses, atherosclerotic plaque has been reported to have roughly an order of magnitude higher iron concentration than that in healthy arterial wall. Hepcidin may promote plaque destabilization by preventing iron mobilization from macrophages within atherosclerotic lesions; the absence of this mobilization may result in increased cellular iron loads, lipid peroxidation, and progression to foam cells. Marked downregulation of hepcidin (e.g., by induction of iron deficiency anemia) could accelerate iron loss from intralesional macrophages. It is proposed that the minimally proatherogenic level of hepcidin is near the low levels associated with iron deficiency anemia or homozygous hemochromatosis. Induced iron deficiency anemia intensely mobilizes macrophage iron throughout the body to support erythropoiesis. Macrophage iron in the interior of atherosclerotic plaques is not exempt from this process. Decreases in both intralesional iron and lesion size by systemic iron reduction have been shown in animal studies. It remains to be confirmed in humans that a period of systemic iron depletion can decrease lesion size and increase lesion stability as demonstrated in animal studies. The proposed effects of hepcidin and iron in plaque progression offer an explanation of the paradox of no increase in atherosclerosis in patients with hemochromatosis despite a key role of iron in atherogenesis in normal subjects.  相似文献   

12.
Previous reports revealed that mutation of mitochondrial inner-membrane located protein SFXN1 led to pleiotropic hematological and skeletal defects in mice, associated with the presence of hypochromic erythroid cell, iron overload in mitochondrion of erythroblast and the development of sideroblastic anemia (SA). However, the potential role of sfxn1 during erythrocyte differentiation and the development of anemia, especially the pathological molecular mechanism still remains elusive. In this study, the correlation between sfxn1 and erythroid cell development is explored through zebrafish in vivo coupled with human hematopoietic cells assay ex vivo. Both knockdown and knockout of sfxn1 result in hypochromic anemia phenotype in zebrafish. Further analyses demonstrate that the development of anemia attributes to the biosynthetic deficiency of hemoglobin, which is caused by the biosynthetic disorder of heme that associates with one?carbon (1C) metabolism process of mitochondrial branch in erythrocyte. Sfxn1 is also involved in the differentiation and maturation of erythrocyte in inducible human umbilical cord blood stem cells. In addition, we found that functional disruption of sfxn1 causes hypochromic anemia that is distinct from SA. These findings reveal that sfxn1 is genetically conserved and essential for the maturation of erythrocyte via facilitating the production of hemoglobin, which may provide a possible guidance for the future clinical treatment of sfxn1 mutation associated hematological disorders.  相似文献   

13.
Idiopathic pulmonary hemosiderosis is a rare condition manifested by recurrent pulmonary hemorrhage of unknown cause, diffuse radiologic abnormalities, cough, hemoptysis and moderate to severe hypochromic anemia. Diagnosis can be confirmed by iron stains of the sputum or lung aspiration or by biopsy. Prolonged spontaneous remission may occur without the use of corticosteroid therapy. Studies here reported indicated that the anemia is hypochromic and microcytic anemia of blood loss and iron deficiency, in spite of the presence of large amounts of iron in the pulmonary tissue. Correction of the anemia by intensive iron therapy and transfusion is considered an important part of therapy.  相似文献   

14.
In the bone-marrow, non-haemoglobin iron can predominantly be found in the reticulum. Slight granules containing iron can also be observed in parts of erythroblasts by means of the Berlin blue reaction. These cells are called sideroblasts. In chemical respect, non-haemoglobin iron consists of ferritin soluble in water and haemosiderin insoluble in water. Erythroblasts will only take their iron from plasma transferrin. For the most part, this iron uptake is being regulated by erythropoietin adapting erythropoiesis to the oxygen requirements of the tissue. The iron contained in erythroblasts is predominantly utilized for haemoglobin synthesis in these cells. A slight part is being taken up by ferritin. The bone-marrow reticulum will phagocytise aged erythrocytes and store liberated iron as ferritin and haemosiderin. Part of the iron is being delivered again to plasma transferrin. With constant serum iron level the liberation of iron from the reticulo-endothelial tissue must correspond to the iron uptake by erythropoiesis. The absence of iron capable of being coloured in the bone-marrow reticulum is considered to be a reliable parameter of iron deficiency. It enables the diagnosis of iron deficiency anaemia to be made even in those patients with serum iron level and a total iron binding capacity lying within the normal range and no hypochromia of erythrocytes being present. It enables iron deficiency anaemia to be separated from sideropenic anaemia with reticulo-endothelial siderosis in differential-diagnostic manner. Even in patients with sideroblastic anaemia, iron colouring of bone-marrow smears is required for ensuring the diagnosis. Recently, a separation has also been made for idiopathic anaemia with abnormal sideroblasts. In these patients there is an increased risk for acute leukemia to develop.  相似文献   

15.
Glycine uptake by erythrocytes from cases of iron deficiency anemia, megaloblastic anemia, and anemia of chronic renal failure and hypothyroidism has been studied. Concentrative uptake, characteristically observed only in iron deficiency, is dependent on a favorable Na+ gradient and is inhibited by p-chloromercuribenzoate. Transport appears to be mediated by a carrier whose possible relation to iron deficiency is discussed.  相似文献   

16.
Iron disorders of genetic origin are mainly composed of iron overload diseases, the most frequent being HFE-related hemochromatosis. Hepcidin deficiency underlies iron overload in HFE-hemochromatosis as well as in several other genetic iron excess disorders, such as hemojuvelin or hepcidin-related hemochromatosis and transferrin receptor 2-related hemochromatosis. Deficiency of ferroportin, the only known cellular protein iron exporter, produces iron overload in the typical form of ferroportin disease. By contrast, genetically enhanced hepcidin production, as observed in matriptase-2 deficiency, generates iron-refractory iron deficiency anemia. Diagnosis of these iron storage disorders is usually established noninvasively through combined biochemical, imaging and genetic approaches. Moreover, improved knowledge of the molecular mechanisms accounting for the variations of iron stores opens the way of novel therapeutic approaches aiming to restore normal iron homeostasis. In this review, we will summarize recent findings about these various genetic entities that have been identified owing to an exemplary interplay between clinicians and basic scientists.  相似文献   

17.
Erythropoietin (Epo) titers in various hematological states were determined by a radioimmunoassay. Epo titers in patients with uremic anemia and iron deficiency anemia were inversely correlated with their respective hemoglobin concentrations. Epo titers in patients with uremic anemia were significantly lower than those in patients with iron deficiency anemia with comparable hemoglobin concentrations.  相似文献   

18.
Yanovich, R, Merkel, D, Israeli, E, Evans, RK, Erlich, T, and Moran, DS. Anemia, iron deficiency, and stress fractures in female combatants during 16 months. J Strength Cond Res 25(12): 3412-3421, 2011-The purpose of this study is to evaluate the hematological profile of military recruits in different settings and training programs and to investigate the link between anemia and iron deficiency with stress fracture (SF) occurrence. We surveyed 3 groups of recruits for 16 months: 221 women (F) and 78 men (M) from 3 different platoons of a gender-integrated combat battalion and a control group (CF) of 121 female soldiers from a noncombat unit. Data were fully collected upon induction and at 4 and 16 months from 48F, 21M, and 31CF. Blood tests, anthropometry, physical aerobic fitness, and SF occurrence were evaluated. On induction day, 18.0 and 19.0% of F and CF were found to be anemic, and 61.4 and 50.9%, respectively, were found to have iron deficiency, whereas 7.7% of M were found to be anemic and 10.2% iron deficient. During the 4 months of army basic training (ABT), anemia and iron deficiency prevalence did not change significantly in any group. After 16-months, anemia prevalence decreased by 8% among F and CF and abated in M. Iron deficiency was prevalent in 50.0, 59.4, and 18.8% of F, CF, and M, respectively. Stress fractures were diagnosed in 14 F during ABT, and they had a significantly higher prevalence (p < 0.05) of anemia and iron deficiency anemia compared to F without SFs. The observed link between anemia and iron deficiency on recruitment day and SFs suggests the importance of screening female combat recruits for these deficiencies. To minimize the health impact of army service on female soldiers, preventative measures related to anemia and iron deficiency should be administered. Further research is needed for evaluating the influence of low iron in kosher meat as a possible explanation for the high prevalence of iron deficiency among young Israeli recruits.  相似文献   

19.
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency.  相似文献   

20.
L. S. Valberg 《CMAJ》1980,122(11):1240-1248
In healthy persons the plasma ferritin concentration is a sensitive index of the size of body iron stores. It has been successfully applied to large-scale surveys of the iron status of populations. It has also proved useful in the assessment of clinical disorders of iron metabolism. A low plasma ferritin level has a high predictive value for the diagnosis of uncomplicated iron deficiency anemia. It is of less value, however, in anemia associated with infection, chronic inflammatory disorders, liver disease and malignant hematologic diseases, for which a low level indicates iron deficiency and a high level excludes it, but intermediate levels are not diagnostic. Measuring the plasma ferritin concentration is also useful for the detection of excess body iron, particularly in idiopathic hemochromatosis, but again it lacks specificity in the presence of active hepatocellular disease. If iron overload is suspected in these circumstances determination of the iron content of a percutaneous liver biopsy specimen is required. In families with idiopathic hemochromatosis the combined determination of the plasma ferritin concentration and the transferrin saturation is a sufficient screen to identify affected relatives; however, estimation of the hepatic iron concentration is required to establish the diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号