首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.  相似文献   

2.
The oncogenic pp60v-src product of ASV (avian sarcoma virus) is shown to be a potent endogenous mitogen, which, unlike mitogens such as PDGF (platelet derived growth factor), is able to stimulate host cell proliferation without the help of other growth factors. Thus, NRK rat cells, infected with a temperature-sensitive ASV mutant which produces an abnormally thermolabile pp60v-src, became proliferatively quiescent at a pp60v-src-inactivating 40 degrees C in medium containing either 0.2% calf serum or no serum at all. Adding PDGF stimulated the quiescent tsASV-NRK cells at 40 degrees C to initiate DNA replication in medium containing 0.2% serum, but not in serum-free medium. By contrast, activating internal pp60v-src by dropping the temperature to a permissive 36 degrees C stimulated these quiescent cells to transit G1, initiate DNA replication and to enter mitosis even in serum-free medium. Thus, relative to PDGF, endogenous pp60v-src behaves as a complete mitogen.  相似文献   

3.
Growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I) are required for quiescent 3T3 cells to proliferate, but zinc deprivation impairs IGF-I-induced DNA synthesis. We recently showed that labile intracellular pool of zinc is involved in cell proliferation. Our objective was to determine whether the labile intracellular pool of zinc plays a role in growth factor (PDGF, EGF, and IGF-I)-stimulated proliferation of 3T3 cells. Quiescent 3T3 cells were cultured in DMEM with or without growth factors. Labile intracellular pool of zinc, DNA synthesis, and cell proliferation were assessed using fluorescence microscopy, 3H-thymidine incorporation, and total cell number counts, respectively. After 24 h, growth factors stimulated DNA synthesis (24%) but not cell proliferation. After 48 h, growth factors stimulated both DNA synthesis (37%) and cell proliferation (89%). In response to growth factor stimulation, the labile intracellular pool of zinc was also elevated after 24 or 48 h of treatment. In summary, growth factor (PDGF, EGF, and IGF-I)-stimulated increase in DNA synthesis and cell proliferation were accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Since elevation of the labile intracellular pool of zinc occurred along with increased DNA synthesis, but cell proliferation remained unchanged, the elevation of the labile intracellular pool of zinc likely occurred during the S phase to provide the zinc needed to support DNA synthesis and ultimately cell proliferation.  相似文献   

4.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

5.
Treatment of quiescent cells with serum results concomitantly in an increase in cellular glutathione (GSH) content and growth stimulation. A possible association between the GSH increase and the growth response was examined by studying separately the effects of nutrients and growth factors on the levels of cellular GSH and proliferation of quiescent NRK-49F cells. The addition of fresh medium with 10% calf serum was found to result in both a twofold increase in cellular GSH and growth stimulation (DNA synthesis and cell proliferation). 10% calf serum alone, without fresh medium, stimulated cell growth but failed to cause a comparable increase in cellular GSH. The addition of fresh medium without 10% serum, and of 0.5 mM cysteine and glutamate, resulted in both instances in a marked increase in cellular GSH, but failed to stimulate cell growth. EGF, in contrast, induced a complete mitogenic response but did not increase cellular GSH. Finally, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), a specific inhibitor of GSH synthesis, decreased cellular GSH and inhibited EGF-induced DNA synthesis, but these two responses do not, in their dose dependency, correlate. The results obtained thus show that the increase in cellular GSH that occurs in quiescent, serum-stimulated NRK-49F cells is a result of nutrient repletion rather than mitogenic stimulation, and increased GSH levels do not necessarily precede DNA synthesis and mitosis.  相似文献   

6.
Quiescent serum-starved 3T3 cells can be stimulated to initiate DNA synthesis after addition of conditioned media from spontaneously tumor-transformed 3T3 cells (3T6-cells) or from SV-40-transformed 3T3 cells (SV-3T3 cells). The conditioned media were found to stimulate both the chromosome cycle (i.e., DNA synthesis and cell division) and the growth cycle (i.e., cellular enlargement). Furthermore, addition of conditioned media to quiescent 3T3 cells increased the activity of HMG CoA reductase--an enzyme previously proposed to exercise some control on cell proliferation in 3T3 cells (Larsson and Zetterberg: J. Cell. Physiol. 129:99-102, 1986. The increased activity of HMG CoA reductase after treatment with tumor cell conditioned media was correlated to the stimulatory effects on DNA synthesis. By treating 3T3 cells stimulated to resume proliferation by addition of conditioned media with mevinolin (a competitive inhibitor of HMG CoA reductase) the activity of HMG CoA reductase as well as the DNA synthesis and cell division were efficiently inhibited. In contrast, HMG CoA activity was not coupled to the cellular enlargement. Therefore, it is proposed that one set of factors present in tumor cell conditioned media preferentially stimulates the chromosome cycle by increasing the HMG-CoA reductase activity, whereas another set of factors is responsible for growth in cell size. Both types of factors are required for balanced growth.  相似文献   

7.
The effects of platelet-derived growth factor (PDGF) on DNA synthesis and proliferation in cultures of arterial smooth muscle cells obtained from young and adult rats, respectively, were measured. Addition of 10-20 ng/ml of PDGF to medium MCDB 104 induced DNA synthesis in quiescent cultures of cells from young animals to a similar extent as 10-20% whole blood serum (WBS). PDGF further stimulated proliferation of the cells in medium MCDB 104, although less markedly than 10% WBS. Antibodies against PDGF partially inhibited the growth response after stimulation with serum. This shows that PDGF is a major growth factor in serum for these cells and that PDGF can promote entrance into and passage through S phase and mitosis independent o plasma factors. Cells from adult animals were also found to respond to PDGF, although a higher concentration (25 ng/ml) was required to obtain a maximum effect. These cells, however, responded better than cells from young animals to stimulation with serum. Further, antibodies against PDGF did not inhibit the growth-stimulatory effect of serum to any appreciable extent. Thus, serum contains growth factors other than PDGF that stimulate preferentiaLly the proliferation of smooth muscle cells from adult animals.  相似文献   

8.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

9.
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.  相似文献   

10.
The soluble form of the insulin-like growth factor II (IGF-II)/mannose 6-P (IGF-II/M6P) receptor is released by cells in culture and circulates in the serum. It retains its ability to bind IGF-II and blocks IGF-II-stimulated DNA synthesis in isolated rat hepatocytes. Because these cells are not normally stimulated to divide by IGF-II in vivo, the effect of soluble IGF-II/M6P receptor on DNA synthesis has been further investigated in two cell lines sensitive to IGF-II; mouse 3T3(A31) fibroblasts, stimulated by low levels of IGF-II following priming by epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and Buffalo rat liver (BRL) cells, which secrete IGF-II and proliferate in the absence of exogenous growth factors. Soluble IGF-II/M6P receptor (0.2-2.0 microgram/ml) purified from a rat hepatoma cell line inhibited DNA synthesis (determined by dThd incorporation) in both cell lines. Basal DNA synthesis was very low in serum-free 3T3 cells, but high in serum-free BRL cells, possibly as a result of autocrine IGF-II production. The inhibitory effect was reversible in cells preincubated with soluble receptor prior to incubation with growth factors and could also be overcome by excess IGF-II. Soluble receptor was more potent in IGF-II-stimulated 3T3 cells and serum-free BRL cells than in BRL cells incubated with serum. Mean inhibition by four preparations of soluble receptor (1 microgram/ml) was 34.7% +/- 4.4% in BRL cells stimulated with fetal calf serum (FCS) (5%) compared to 54.8% +/- 4.2% in serum-free BRL cells (P = 0.05) and 60.6% +/- 6.5% (P = 0.02) in 3T3 cells stimulated by PDGF, EGF, and IGF-II. Soluble receptor had no effect on DNA synthesis in 3T3 cells stimulated with IGF-I. These results demonstrate that soluble receptor, at physiological concentrations, can block proliferation of cells by IGF-II and could therefore play a role in blocking tumor growth mediated by IGF-II.  相似文献   

11.
In previous studies (Housey et al.: Cell 52:343-354, 1988), our laboratory demonstrated that a cell line R6-PKC3 that stably overproduces high levels of the beta 1 isoform of PKC displayed several abnormalities in growth control, and these phenotypic changes were also markedly enhanced when the cells were exposed to TPA. The present studies indicate that these cells also display marked changes in their response to certain growth factors. A striking finding was that several agents when tested alone in serum-free medium, including EGF, PDGF, TPA, teleocidin, and OAG, stimulated DNA synthesis in quiescent R6-PKC3 cells but had a negligible effect in quiescent R6-C1 cells, a vector control cell line with normal levels of PKC. R6-PKC3 cells also show an exaggerated response to very low concentrations of serum, when compared to R6-C1 control cells. These studies provide direct genetic evidence that alterations in cellular levels of PKC can markedly influence the responses of cells to specific growth factors.  相似文献   

12.
The platelet-derived growth factor (PDGF), which is found in serum but not in plasma, has been purified to homogeneity; it stimulates replication at a concentration of 10?10M. Brief treatment with PDGF causes densityinhibited Balb/c-3T3 cells to become competent to synthesize DNA; pituitary fibroblast growth factor (FGF) or precipitates of calcium phosphate also induce competence. Continuous treatment with plasma allows competent, but not incompetent, cells to synthesize DNA. A critical component of plasma is somatomedin, a group of hormones with insulin-like activity; multiplication-stimulating activity (MSA) or insulin replace plasma somatomedin in promoting DNA synthesis. We have studied the molecular correlates of competence and the role of SV40 gene A products in regulating DNA synthesis. Treatment of quiescent cells with pure PDGF or FGF causes the preferential synthesis of five cytoplasmic proteins (approximate molecular weight 29,000, 35,000, 45,000, 60,000, and 72,000 detected by SDS-PAGE under reducing conditions). Two of these competence-associated proteins (29,000 and 35,000 daltons) are found within 40 min of PDGF addition; they are not induced by plasma, insulin, or epidermal growth factor (EGF), PDGF, FGF, or calcium phosphate induce an ultrastructure change within the centriole of 3T3 cells; this ultrastructural modification of the centriole is detectable by immunofluorescence within 2 h of PDGF treatment. Plasma, EGF, or MSA do not modify the centriole. SV40 induces replicative DNA synthesis in growth-arrested 3T3 cells but does not cause this alteration in centriole structure. Gene A variants of SV40, including a mutant with temperature-sensitive (ts) T-antigen (ts A209), a deletion in t-antigen (dl 884), and several ts A209 strains containing t-antigen deletions were used to induce DNA synthesis in Balb/c-3T3 cells. Like wild type SV40, all strains induced DNA synthesis equally well under permissive or nonpermissive conditions. Addition of PDGF or plasma had little effect on SV40-induced DNA synthesis. Thus, the viral function that induces replicative DNA synthesis in Balb/c-3T3 cells is not t and is not temperature sensitive. This SV40 gene function overrides the cellular requirement for hormonal growth factors. It does not induce transient centriole deciliation, a hormonally regulated event.  相似文献   

13.
Progressive stenosis or occlusion of bilateral internal carotid arteries by fibrocellular intimal thickening results in cerebral ischemia in moyamoya disease. The etiology is unknown. We examined cultured arterial smooth muscle cells (SMC) from scalp arteries of five patients with moyamoya disease. In this study we investigated the responsiveness of the cells in culture to serum mitogens including platelet-derived growth factor (PDGF), a major mitogen of SMC, and compared the response to that of cells derived from age-matched control patients. SMC from patients with moyamoya disease proliferated less rapidly in a medium with 15% serum than did control SMC and responded poorly to the addition of PDGF to 5% serum. PDGF alone did not stimulate SMC in a quiescent state to initiate DNA synthesis in moyamoya disease, without serum factors other than bovine serum albumin, though it significantly stimulated the controls. Simultaneous additions of epidermal growth factor, insulin-like growth factor-I, and PDGF stimulated initiation of DNA synthesis in cells from moyamoya disease, but not as much as PDGF alone did in the controls. Although direct correlations with the pathogenesis of the disease remain to be clarified, the results indicate altered interrelations between serum factors and the cellular responses in vessels of moyamoya disease.  相似文献   

14.
Cultured hepatocytes from adult rats stimulated with combinations of growth factors enter into S phase but do not undergo multiple rounds of DNA synthesis nor mitosis. We have examined the potential of an introduced oncogene to induce alterations in the DNA synthetic activity of the cultured hepatocytes in response to epidermal growth factor (EGF). Overexpression of c-myc did not initiate significant DNA synthesis in rat hepatocyte cultures alone, although it cooperated with added EGF to super-induce thymidine incorporation into DNA. From our results, it is suggested that EGF is also necessary to initiate hepatocyte DNA synthesis probably by inducing a battery of cell cycle-related genes if incubated with c-myc transfected cultures for only 5 hours. Hepatocyte polypeptides reacting with anti-MYC antisera were found to migrate between 55-67 KDa in SDS-PAGE; only the 64-67 KDa species were found to be phosphorylated, and the observed size heterogeneity may be due to proteolytic degradation or may reflect presently unknown posttranslational modifications.  相似文献   

15.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

16.
To investigate the role of intracellular Ca2+ in the mechanism of cellular proliferation of vascular smooth muscle cells (VSMC), the effects of Ca2+-antagonists and calmodulin (CaM) inhibitors on DNA synthesis stimulated by serum-derived growth factors were studied in cultured VSMCs derived from rat aorta. DNA synthesis assessed by incorporation of [3H]thymidine into the cells was significantly stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF) or fetal bovine serum (FBS), of which the effects were dose-dependently inhibited by a variety of Ca2+-antagonists, such as verapamil, diltiazem and nicardipine. Trifluoperazine and W-7, both specific CaM inhibitors, similarly inhibited DNA synthesis stimulated by EGF, PDGF or FBS in a dose-dependent manner, whereas W-5, a less specific CaM inhibitor, was minimally effective. These data suggest that the Ca2+-CaM system plays an important role in the mechanism of growth factor-induced DNA synthesis in VSMCs.  相似文献   

17.
BP3T3, a clonal benzo(a)pyrene-transformed BALB/c-3T3 cell line, is conditionally responsive to growth factor stimulation. Density arrested cell populations deprived of growth factors by pretreatment with 0.5% platelet-poor plasma synthesized DNA both in response to ng/ml concentrations of PDGF, EGF, and somatomedin C, and in response to insulin, plasma, and serum. The above agents acted singly to induce DNA synthesis, but synergism is suggested because a higher percentage of cells were stimulated to enter the S phase when the growth factors were added in combination. Desensitization to growth factors occurred when cultures were pretreated with the high concentration of growth factors present in 10% serum (or plasma). In desensitized cultures none of the above agents, added singly or in combination, stimulated DNA synthesis. This effect appears to be global because pretreatment with one growth factor (e.g., insulin) inhibited the action of another (e.g., PDGF). Cell density appears to play a critical role in regulating DNA synthesis. Unlike nontransformed BALB/c-3T3 cells whose density is regulated by the serum concentration, the density of BP3T3 cells reached a plateau when cultures were grown in a serum (or plasma) concentration of 3% or greater. Such density arrested cultures were growth factor unresponsive; however, the cells rapidly responded to growth factors by synthesizing DNA and replicating when reseeded at a lower cell density. Thus the growth of BP3T3 cells is regulated by both growth factors and cell density.  相似文献   

18.
19.
20.
Gently trypsinized Swiss 3T3 cells inoculated into medium MCDB 402 attach readily to polylysine-coated surfaces and remain viable for several days in the absence of exogenously added protein. Short-term multiplication under defined conditions can be obtained by supplementing the MCDB 402 with fibroblast growth factor (FGF), insulin (INS), and dexamethasone (DEX). Addition of bovine plasma fibronectin further improves attachment and viability. This system does not require initial plating in serum or the addition of poorly defined extracts for cellular attachment or for multiplication. In the complete system minus FGF, cells plated at a low density attach to the culture surface and become quiescent. The addition of FGF or PDGF 48–72 h after plating stimulates a high level of DNA synthesis during the following 24 h. EGF also stimulates DNA synthesis in these cells, but to a lesser extent. Insulin and dexamethasone are not needed for the initial DNA synthesis response to FGF, but are needed for continuing multiplication over a period of several days. This system provides a means for studying the effects of specific mitogens on Swiss 3T3 cells in the absence of undefined supplements, and without complications due to density-dependent inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号