首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.  相似文献   

2.
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.  相似文献   

3.
Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751 was deleted or replaced by other amino acids. These mutants exhibit altered DNA gyrase activity and different levels of resistance to microcin B17.  相似文献   

4.
Microcin B17 (MccB17) is a peptide-based bacterial toxin that targets DNA gyrase, the bacterial enzyme that introduces supercoils into DNA. The site and mode of action of MccB17 on gyrase are unclear. We review what is currently known about MccB17-gyrase interactions and summarise approaches to understanding its mode of action that involve modification of the toxin. We describe experiments in which treatment of the toxin at high pH leads to the deamidation of two asparagine residues to aspartates. The modified toxin was found to be inactive in vivo and in vitro, suggesting that the Asn residues are essential for activity. Following on from these studies we have used molecular modelling to suggest a 3D structure for microcin B17. We discuss the implications of this model for MccB17 action and investigate the possibility that it binds metal ions.  相似文献   

5.
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase–DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (GyrI) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. GyrI reduces intrinsic as well as toxin-stabilized gyrase–DNA covalent complexes. Furthermore, GyrI reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, GyrI is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.  相似文献   

6.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

7.
The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. We have reconstituted the inactive GyrA-CcdB complex by denaturation and renaturation of the purified GyrA dimer in the presence of CcdB. This inactivating interaction involves the N-terminal domain of GyrA, because similar inactive complexes were formed by denaturing and renaturing N-terminal fragments of the GyrA protein in the presence of CcdB. Single amino acid mutations, both in GyrA and in CcdB, that prevent CcdB-induced DNA cleavage also prevent formation of the inactive complexes, indicating that some essential interaction sites of GyrA and of CcdB are common to both the poisoning and the inactivation processes. Whereas the lethal effect of CcdB is most probably due to poisoning of the gyrase-DNA complex, the inactivation pathway may prevent cell death through formation of a toxin-antitoxin-like complex between CcdB and newly translated GyrA subunits. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. The products of treating the inactive GyrA-CcdB complex with CcdA are free GyrA and a CcdB-CcdA complex of approximately 44 kDa, which may correspond to a (CcdB)2(CcdA)2 heterotetramer.  相似文献   

8.
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.  相似文献   

9.
DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.  相似文献   

10.
11.
DNA gyrase, a type II topoisomerase, is the sole supercoiling activity in the cell and is essential for cell survival. There are two proteinaceous inhibitors of DNA gyrase that are plasmid-borne and ensure maintenance of the plasmids in bacterial populations. However, the physiological role of GyrI, an inhibitor of DNA gyrase encoded by the Escherichia coli genome, has been elusive. Previously, we have shown that GyrI imparts resistance against microcin B17 and CcdB. Here, we find that GyrI provided partial/limited protection against the quinolone class of gyrase inhibitors but had no effect on inhibitors that interfere with the ATPase activity of the enzyme. Moreover, GyrI negated the effect of alkylating agents, such as mitomycin C and N-methyl-N-nitro-N-nitrosoguanidine, that act independently of DNA gyrase. Hence, in vivo, GyrI appears to be involved in reducing DNA damage from many sources. In contrast, GyrI is not effective against lesions induced by ultraviolet radiation. Furthermore, the expression of GyrI does not significantly alter the topology of DNA. Thus, although isolated as an inhibitor of DNA gyrase, GyrI seems to have a broader role in vivo than previously envisaged.  相似文献   

12.
Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.  相似文献   

13.
Microcin B17 is a novel peptide antibiotic of low Mr (about 4000) produced by Escherichia coli strains carrying plasmid pMccB17. The action of this microcin in sensitive cells is essentially irreversible, follows single-hit kinetics, and leads to an abrupt arrest of DNA replication and, consequently, to the induction of the SOS response. RecA- and RecBC- strains are hypersensitive to microcin B17. Strains producing a non-cleavable SOS repressor (lexAl mutant) are also more sensitive than wild-type, whereas strains carrying a mutation which causes constitutive expression of the SOS response (spr-55) are less sensitive to microcin. Microcin B17 does not induce the SOS response in cells which do not have an active replication fork. The results suggest that the mode of action of this microcin is different from all other well-characterized microcins and colicins, and from other antibiotics which inhibit DNA replication.  相似文献   

14.
Microcin C7, a peptide antibiotic inhibitor of protein synthesis, is produced by Escherichia coli K-12 strains that carry the 43-kilobase low-copy-number plasmid pMccC7. Microcin C7 production and immunity determinants of this plasmid have been cloned into the vectors pBR322 and pACYC184. The resulting plasmids overproduce microcin C7 and express immunity against the microcin. Mcc- and Mcc- Imm- mutants have been isolated on recombinant plasmids by inserting transposable elements. Physical and phenotypic characterization of these mutants shows that a DNA region of 5 kilobases is required to produce microcin C7, and that two small regions located inside the producing region are also required to express immunity. Analysis of plasmids carrying mcc-lacZ gene fusions indicates that all microcin DNA is transcribed in the same direction. The results suggest that a structure like a polycistronic operon is responsible for microcin C7 production and immunity.  相似文献   

15.
Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.  相似文献   

16.
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.  相似文献   

17.
Intricate interactions within the ccd plasmid addiction system.   总被引:3,自引:0,他引:3  
The ccd addiction system plays a crucial role in the stable maintenance of the Escherichia coli F plasmid. It codes for a stable toxin (CcdB) and a less stable antidote (CcdA). Both are expressed at low levels during normal cell growth. Upon plasmid loss, CcdB outlives CcdA and kills the cell by poisoning gyrase. The interactions between CcdB, CcdA, and its promoter DNA were analyzed. In solution, the CcdA-CcdB interaction is complex, leading to various complexes with different stoichiometry. CcdA has two binding sites for CcdB and vice versa, permitting soluble hexamer formation but also causing precipitation, especially at CcdA:CcdB ratios close to one. CcdA alone, but not CcdB, binds to promoter DNA with high on and off rates. The presence of CcdB enhances the affinity and the specificity of CcdA-DNA binding and results in a stable CcdA*CcdB*DNA complex with a CcdA:CcdB ratio of one. This (CcdA(2)CcdB(2))(n) complex has multiple DNA-binding sites and spirals around the 120-bp promoter region.  相似文献   

18.
19.
The ccd toxin-antitoxin system of the F plasmid encodes CcdB, a protein that poisons the essential Escherichia coli DNA gyrase, unique type IIA topoisomerase able to introduce negative supercoils into DNA. Based on CcdB structure, a series of linear peptide analogues were obtained by the solid-phase methodology. One of these peptides (CcdBET2) displayed inhibition of the supercoiling activity of bacterial DNA gyrase with a concentration required for complete inhibition (IC(100)=10 microM) lower than the wild type CcdB. For Topo IV, a second type IIA bacterial topoisomerase, CcdBET2 was better inhibited the relaxation activity with an IC(100) of 5 microM (wt CcdB>10 microM). The replacement of Gly, present in the three C-terminal amino acid residues, by Glu, abolished the capacity to inhibit the gyrase but not the Topo IV activities. These findings demonstrate that the mechanism by which CcdBET2 inhibits DNA gyrase is different of the mechanism by which inhibits Topo IV. Therefore, CcdBET2 is a new type II topoisomerase inhibitor with specificity for Topo IV.  相似文献   

20.
Plasmid pMccB17 (70 kilobases [kb]) codes for the production of microcin B17, a peptide that inhibits DNA synthesis, and for microcin B17 immunity. A BamHI-EcoRI fragment of 5.1 kb from pMccB17 was cloned into pBR322 in two steps. The resulting plasmid (pMM102) overproduced microcin B17 and expressed immunity against microcin. Mcc- and Mcc- Imm- mutants were isolated on plasmids pMccB17 and pMM102 by deleting various DNA fragments and by inserting different translocatable elements. Physical and phenotypic characterization of these mutants showed that a DNA region of 3.0 to 3.5 kb is required to produce microcin B17, whereas an adjacent region of about 1.0 kb is required to express microcin B17 immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号