首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the narK gene in Escherichia coli was studied by constructing narK-lacZ gene and operon fusions and analyzing their expression in various mutant strains in response to changes in cell growth conditions. Expression of narK-lacZ was induced 110-fold by a shift to anaerobic growth and a further 8-fold by the presence of nitrate. The fnr gene product mediates this anaerobic response, while nitrate control is mediated by the narL, narX, and narQ gene products. The narX and narQ gene products were shown to sense nitrate independently of one another and could each activate narK expression in a NarL-dependent manner. We provide the first evidence that NarL and FNR interact to ensure optimal expression of narK. IHF and Fis proteins are also required for full activation of narK expression, and their roles in DNA bending are discussed. Finally, the availability of molybdate and iron ions is necessary for optimal narK expression, whereas the availability of nitrite is not. Although the role of the narK gene product in cell metabolism remains uncertain, the pattern of narK gene expression is consistent with a proposed role of NarK in nitrate uptake by the cell for nitrate-linked electron transport.  相似文献   

2.
In response to nitrate availability, Escherichia coli regulates the synthesis of a number of enzymes involved in anaerobic respiration and fermentation. When nitrate is present, nitrate reductase (narGHJI) gene expression is induced, while expression of the DMSO/TMAO reductase (dmsABC), fumarate reductase (frdABCD) and fermentation related genes are repressed. The narL and narX gene products are required for this nitrate-dependent control, and apparently function as members of a two-component regulatory system. NarX is a presumed sensor-transmitter for nitrate and possibly molybdenum detection. The presumed response-regulator, NarL, when activated by NarX then binds at the regulatory DNA sites of genes to modulate their expression. In this study a third nitrate regulatory gene, narQ, was identified that also participates in nitrate-dependent gene regulation. Strains defective in either narQ or narX alone exhibited no nitrate-dependent phenotype whereas mutants defective in both narQ and narX were fully inactive for nitrate-dependent repression or activation. In all conditions tested, this regulation required a functional narL gene product. These findings suggest that the narX and narQ products have complementary sensor-transmitter functions for nitrate detection, and can work independently to activate NarL, for eliciting nitrate-dependent regulation of anaerobic electron transport and fermentation functions. The narQ gene was cloned, sequenced, and compared with the narX gene. Both gene products are similar in size, hydrophobicity, and sequence, and contain a highly conserved histidine residue common to sensor-transmitter proteins.  相似文献   

3.
4.
5.
Previous studies have shown that narL+ is required for nitrate regulation of anaerobic respiratory enzyme synthesis, including formate dehydrogenase-N, nitrate reductase, and fumarate reductase. Insertions in the closely linked narX gene decrease, but do not abolish, nitrate regulation of anaerobic enzyme synthesis. Analysis of sequence similarities suggests that NarX and NarL comprise a two-component regulatory pair. We constructed lacZ operon and gene fusions to investigate the operon structure of narXL. We found evidence for a complex operon with at least two promoters; PXL-narX-PL-narL. We also investigated the role of NarX in nitrate regulation of anaerobic respiratory enzyme synthesis by constructing nonpolar loss of function narX alleles. These deletions were studied on narL+ lambda specialized transducing bacteriophage. The narX deletions had no effect on nitrate regulation in delta (narXL) strains. This finding suggest that the subtle effects of previously studied narX insertions are due to decreased expression of narL and that narX+ is not essential for normal nitrate regulation. The role of NarX in nitrate regulation remains to be determined.  相似文献   

6.
The pfl operon is expressed at high levels anaerobically. Growth of Escherichia coli in the presence of nitrate or nitrite led to a 45% decrease in expression when cells were cultivated in rich medium. Nitrate repression, however, was significantly enhanced (sevenfold) when the cells were cultured in minimal medium. Regulation of pfl expression by nitrate was dependent on the NarL, NarP, NarQ, and NarX proteins but independent of FNR, ArcA, and integration host factor, which are additional regulators of pfl expression. Strains unable to synthesize any one of the NarL, NarP, NarQ, or NarX proteins, but retaining the capacity to synthesize the remaining three, exhibited essentially normal nitrate regulation. In contrast, narL narP and narX narQ double null mutants were devoid of nitrate regulation when cultured in rich medium but they retained some nitrate repression (1.3-fold) when grown in minimal medium. By using lacZ fusions, it was possible to localize the DNA sequences required to mediate nitrate repression to the pfl promoter-regulatory region. DNase I footprinting studies identified five potential binding sites for the wild-type NarL protein in the pfl promoter-regulatory region. Specific footprints were obtained only when NarL was phosphorylated with acetyl phosphate before the binding reaction was performed. Each of the protected regions contained at least one heptamer sequence which has been deduced from mutagenesis studies to be essential for NarL binding (K. Tyson, A. Bell, J. Cole, and S. Busby, Mol. Microbiol. 7:151-157, 1993).  相似文献   

7.
8.
During anaerobic growth, expression of the fdnGHI and narGHJI operons of Escherichia coli is induced by the NarL protein in response to nitrate. The fdnG operon control region contains four NarL-binding sites (termed NarL heptamers) between positions −70 and −130. The two central NarL heptamers of fdnG are arranged as an inverted repeat and are essential for regulation by NarL. We used mutational analysis of these central heptamers to investigate the precise sequence requirements for NarL-dependent induction. Mutations were examined for their effects on NarL-dependent expression in vivo . Substitutions at position 1 of either heptamer had the strongest effect whereas substitutions at position 7 had the weakest effect. For some positions, alterations in both heptamers had a stronger effect than either of the single changes. The 2 bp spacing between these NarL heptamers was also important for normal nitrate induction. The narG operon control region has at least eight NarL heptamers arranged in two groups. Previous work has shown that nucleotide substitutions in two of these heptamers, centred at positions −195 and −89, severely reduce nitrate induction of narG operon expression in vivo and significantly interfere with NarL–DNA interactions in vitro . Substitutions in heptamers −185 and −101 affected narG operon induction only when the concentration of phospho-NarL was low (during growth in the presence of nitrite). Changes in each of the other four NarL heptamers studied had little or no effect on nitrate or nitrite induction of narG operon expression or on NarL–DNA interactions in vitro  相似文献   

9.
10.
Shewanella violacea DSS12 is facultative piezophile isolated from the deep-sea. The expression of cydDC genes (required for d-type cytochrome maturation) of the organism is regulated by hydrostatic pressure. In this study, we analyzed the nucleotide sequence upstream of cydDC in detail and found that there are putative binding sites for the NarL protein which is part of a two-component regulatory system also containing the sensor protein NarX. Furthermore, we identified the narQP genes (homologues of narXL) from S. violacea DSS12 and demonstrated the heterologous expression of narP in Escherichia coli. These results will be helpful in examining pressure regulation of gene expression in S. violacea at the molecular level.  相似文献   

11.
12.
13.
14.
15.
16.
Pseudomonas aeruginosa forms most of its heme under anaerobic denitrifying conditions. To study the regulation of the hemA gene, which codes for the first enzyme of heme biosynthesis in P. aeruginosa, a lacZ reporter gene fusion was constructed. Expression of lacZ under the control of the hemA promoter was found to be increased by 2.8-fold under anaerobic conditions in the presence of the alternative electron acceptor nitrate, relative to the level observed under aerobic growth conditions. Anaerobic fermentative growth or the presence of nitrite did not affect the lacZ expression. The genes encoding the oxygen sensor protein Anr, the redox regulator Dnr, the nitrate regulator NarL and the DNA-bending Integration Host Factor (IHF) are all required for the cooperative anaerobic induction of the hemA promoter hemAp (1). Potential binding sites for these regulatory proteins were identified by site-directed mutagenesis of the promoter fused to the reporter gene. The mode of regulation of P. aeruginosa hemA differs significantly from that described for the hemA gene of Escherichia coli K-12.  相似文献   

17.
B. L. Berg  V. Stewart 《Genetics》1990,125(4):691-702
Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.  相似文献   

18.
19.
20.
Nitrate and nitrite control of anaerobic respiratory gene expression is mediated by dual two-component regulatory systems. The sensors NarX and NarQ each communicate nitrate and nitrite availability to the response regulators NarL and NarP. In the presence of nitrate, the NarX protein acts as a positive regulator ("kinase") of both NarL and NarP activity. In the presence of nitrite, the NarX protein acts primarily as a negative regulator ("phosphatase") of NarL activity but remains a positive regulator of NarP activity. In other topologically similar sensory proteins, such as the methyl-accepting chemotaxis proteins, the transmembrane regions are important for signal transduction. We therefore used localized mutagenesis of the amino-terminal coding region to isolate mutations in narX that confer an altered signaling phenotype. Five of the mutations studied alter residues in the amino-terminal cytoplasmic tail, and five alter residues in the first transmembrane segment. Based on patterns of target operon expression in various regulatory mutant strain backgrounds, most of the mutant NarX proteins appear to have alterations in negative control function. One mutant, with a change of residue Leu-11 to Pro in the cytoplasmic tail, exhibits strikingly altered patterns of NarL- and NarP-dependent gene expression. We conclude that the amino terminus of the NarX protein is important for the differential response to nitrate and nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号