首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.  相似文献   

2.
UV or gamma irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin-dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21 function.  相似文献   

3.
UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.  相似文献   

4.
The effects of ultraviolet (UV) light on cell morphology, deoxyribonucleic acid (DNA) synthesis, and protein synthesis in UV-sensitive and UV-resistant strains of Haemophilus influenzae were examined. Relatively low doses of UV induce lyses in the sensitive strains but not in the resistant mutant; however, UV temporarily blocks cell division of the resistant mutant, and elongated cells are formed after a period of incubation. Low doses of UV do not stop DNA synthesis in any of the strains examined; however, they do slow the rate of DNA synthesis in a manner consistent with the model correlating the kinetics of postirradiation DNA synthesis with the cell's ability to repair UV-induced DNA lesions. The data are not consistent with a model in which UV causes all DNA synthesis to stop for a time linearly dependent on dose.  相似文献   

5.
The synthesis of 8-azido-2'-deoxyadenosine-5'-triphosphate is described. The photoreactive dATP analog was characterized by thin layer chromatography, proton resonance spectroscopy, infrared spectroscopy and UV spectroscopy. Its photolysis upon UV irradiation was studied. After incorporation of this dATP analog into DNA containing the tet operator sequence the investigation of the interactions between tet operator DNA and Tet repressor protein by UV photocross-linking becomes possible. Photocross-linking of protein to DNA was demonstrated by the reduced migration of the DNA in SDS polyacrylamide gel electrophoresis. Addition of the inducer tetracycline prior to UV irradiation significantly reduces the DNA-protein cross-linking rate. The long wave UV light applied here does not significantly alter the DNA or the protein under the photocross-linking conditions.  相似文献   

6.
Cultured cells of Microtus agrestis, the common field vole, perform unscheduled DNA synthesis after UV irradiation. They respond to incubation with a DNA synthesis inhibitor (1-beta-D-arabinofuranosylcytosine) following UV in ways typical of cells capable of excision repair, with reduced survival and an accumulation of breaks in pre-existing DNA. Microtus cells irradiated with UV in a quiescent pre-S-phase state are more sensitive to UV than are proliferating cells, in terms of survival. Adding DNA precursors (deoxyribonucleosides), and--in case of proliferating cells--growing in complete rather than dialysed serum, enhance UV survival. Quiescent cells show a higher rate of endonucleolytic incision of DNA after UV than do proliferating cells. The balance between incision (producing single-strand DNA breaks) and repair DNA synthesis (leading to rejoining of breaks) is shifted by the addition of deoxyribonucleosides, which suggests that DNA precursor supply is a rate-limiting factor in repair. The lower survival of quiescent cells (in the absence of added deoxyribonucleosides) may be due to insufficient precursor supply to meet the demands of the high incision rate.  相似文献   

7.
In temperate lakes, asynchronous cycles in surface water temperatures and incident ultraviolet (UV) radiation expose aquatic organisms to damaging UV radiation at different temperatures. The enzyme systems that repair UV‐induced DNA damage are temperature dependent, and thus potentially less effective at repairing DNA damage at lower temperatures. This hypothesis was tested by examining the levels of UV‐induced DNA damage in the freshwater crustacean Daphnia pulicaria in the presence and absence of longer‐wavelength photoreactivating radiation (PRR) that induces photoenzymatic repair (PER) of DNA damage. By exposing both live and dead (freeze‐killed) Daphnia as well as raw DNA to UV‐B in the presence and absence of PRR, we were able to estimate the relative importance and temperature dependence of PER (light repair), nucleotide excision repair (NER, dark repair), and photoprotection (PP). Total DNA damage increased with increasing temperature. However, the even greater increase in DNA repair rates at higher temperatures led net DNA damage (total DNA damage minus repair) to be greater at lower temperatures. Photoprotection accounted for a much greater proportion of the reduction in DNA damage than did repair. Experiments that looked at survival rates following UV exposure demonstrated that PER increased survival rates. The important implication is that aquatic organisms that depend heavily on DNA repair processes may be less able to survive high UV exposure in low temperature environments. Photoprotection may be more effective under the low temperature, high UV conditions such as are found in early spring or at high elevations.  相似文献   

8.
Late induction of human DNA ligase I after UV-C irradiation.   总被引:4,自引:2,他引:2       下载免费PDF全文
We have studied the regulation of DNA ligase I gene expression in UV-C irradiated human primary fibroblasts. An increase of approximately 6-fold both in DNA ligase I messenger and activity levels was observed 24 h after UV treatment, when nucleotide excision repair (NER) is no longer operating. DNA ligase I induction is serum-independent and is controlled mainly by the steady-state level of its mRNA. The activation is a function of the UV dose and occurs at lower doses in cells showing UV hypersensitivity. No increase in replicative DNA polymerase alpha activity was found, indicating that UV induction of DNA ligase I occurs through a pathway that differs from the one causing activation of the replication machinery. These data suggest that DNA ligase I induction could be linked to the repair of DNA damage not removed by NER.  相似文献   

9.
The fate of ultraviolet-induced, thymine-containing dimers in the deoxyribonucleic acid (DNA) of Bacillus subtilis was investigated in both the wild type (UV(R)) and an ultraviolet light-sensitive (UV(S)) mutant. During incubation in the dark, dimers were excised from the DNA of the UV(R)B. subtilis, but remained in the DNA of the UV(S) mutant. About 40% of the excised dimers recovered in the wild type were in the acid-soluble fraction; the remainder were in the incubation medium. A UV(S) mutant of Escherichia coli K-12, shown previously to be defective in dimer excision, was irradiated with ultraviolet light and incubated under visible light for 3 hr. About 65% of thymine-containing photoproducts were removed from the DNA. These photoproducts were not recovered in the acid-soluble fraction. In comparison, the UV(S) mutant of B. subtilis lost only 13% of such photoproducts from DNA when exposed to light under the same conditions.  相似文献   

10.
In addition to inhibiting replicative DNA synthesis in HeLa cells, novobiocin has a severe effect on the cellular response to UV irradiation, reducing the number of breaks made in pre-existing DNA by the excision repair process. The inhibition of UV repair by novobiocin is reflected in enhanced UV-killing of these cells. Rejoining of DNA after X irradiation is not impaired by novobiocin. The recognition and removal of UV damage may require unwinding of the DNA by gyrase, which--in bacteria--is the target for novobiocin.  相似文献   

11.
The effect of UV irradiation on the reconstituted nucleohistone have been studied with reference to its (nucleohistone) changes in physical properties, after irradiation at different UV doses. The rate of fall of specific viscosity ratio of the reconstituted nucleohistone as a function of UV dose decreased gradually with the increasing histone to DNA weight ratio (r). This effect, was not observed when the histones remained dissociated from DNA, in high ionic strength (1.5 M NaCl). Histone-DNA complex (r=0.97) irradiated up to a dose of 3.6×104 J/m2 had a stable melting temperature unlike free DNA where UV irradiation lowered the melting temperature and the heterogeneous melting profiles were observed. Rate of formaldehyde reaction, with DNA recovered from the irradiated complex, was slower than that with native DNA treated at the same dose. All this suggested that the effect of UV in the DNA of the nucleohistone was less, compared to that in free DNA.  相似文献   

12.
Highly competent cultures of Haemophilus influenzae are inactivated by exposure to transforming deoxyribonucleic acid (DNA) irradiated with ultraviolet light (UV). As a function of UV dose to the DNA, the killing goes to a maximum and then decreases. The killing of H. influenzae by unirradiated H. parainfluenzae DNA, reported by other workers, is enhanced by low doses of UV, but drops off at high doses. Since there are no such lethal effects in a strain of H. influenzae that takes up DNA normally but does not integrate it, it is concluded that the killing is associated with integrated UV lesions. All the killing of wild-type cells due to irradiated DNA is eliminated by photoreactivation of the DNA. The killing of an excisionless strain of H. influenzae, however, is not eliminated by maximal photoreactivation of the irradiated transforming DNA. The nonphotoreactivable fraction of killing in the excisionless strain increases with increasing dose. The kinetics of the killing-dose curves may be explained only partially in terms of UV-induced loss of integration. It is postulated that the number of pyrimidine dimers relative to other DNA components integrated decreases at higher UV doses.  相似文献   

13.
Exposure of eukaryotic cells to ultraviolet light results in a temporary inhibition of DNA replication as well as a temporary blockage of DNA fork progression. Recently there has been considerable debate as to whether the (5-6)cyclobutane pyrimidine dimer, the pyrimidine(6-4)pyrimidone lesion or both are responsible for these effects. Using cell lines that repair both of these lesions (CHO AA8), only (6-4) lesions (CHO UV61) or neither (CHO UV5), we have shown that in rodent cells both lesions appear to play a role in both the inhibition of thymidine incorporation and the blockage of DNA fork progression. Specifically, after exposure to 2.5 J/m2, AA8 cells recover normal rates of DNA replication within 5 h after exposure, while UV5 cells exhibit a greater depression in thymidine incorporation for at least 10 h. UV61 cells, on the other hand, show an intermediate response, both with respect to the extent of the initial depression and the rate of recovery of thymidine incorporation. UV61 cells also exhibit an intermediate response with respect to blockage of DNA fork progression. In previous publications we have shown that UV5 cells exhibit extensive blockage of DNA fork progression and only limited recovery of this effect within the first 5 h after exposure to UV. In this report we show that UV61 cells exhibit a more extensive blockage of fork progression than is observed in AA8 cells. These blocks also appear to be removed (or overcome) more slowly than in the AA8 cells, but more rapidly than in UV5 cells. Taken together we conclude that both lesions appear to be involved in the initial depression in thymidine incorporation and the initial blockage of DNA fork progression in rodent cells. These data also indicate that (6-4) lesions may be responsible for the prolonged depression in thymidine incorporation and the prolonged blockage of DNA fork progression observed in UV5 cells.  相似文献   

14.
R Wu  J L Wu    Y C Yeh 《Journal of virology》1975,16(1):5-16
Nonsense mutants in gene 59 (amC5, amHL628) were used to study the role of this gene in the repair of UV-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to UV irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after UV irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to UV irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that UV repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B (su minus), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of UV lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules.  相似文献   

15.
Mechanisms of Enhancement of SP82 Transfection   总被引:9,自引:4,他引:5       下载免费PDF全文
SP82 transfection in Bacillus subtilis could be markedly increased by exposing the competent cells to ultraviolet (UV)-irradiated homologous or heterologous cellular deoxyribonucleic acid (DNA). This enhancement was similar in time and level of peak effect to enhancements effected by preinfection with helper phages or by UV irradiation of competent cells. The effectiveness of various DNA preparations in increasing transfection paralleled the adenine plus thymidine content of the preparations and was maximal at UV doses approaching those which were maximal for pyrimidine dimerization. The most probable interpretation is that irradiated DNA binds cellular nucleases which would otherwise inactivate the incoming transfecting DNA.  相似文献   

16.
Adenovirus is a focus of the water treatment community because of its resistance to standard, monochromatic low-pressure (LP) UV irradiation. Recent research has shown that polychromatic, medium-pressure (MP) UV sources are more effective than LP UV for disinfection of adenovirus when viral inactivation is measured using cell culture infectivity assays; however, UV-induced DNA damage may be repaired during cell culture infectivity assays, and this confounds interpretation of these results. Objectives of this work were to study adenoviral response to both LP and MP UV using (i) standard cell culture infectivity assays and (ii) a PCR assay to directly assess damage to the adenoviral genome without introducing the virus into cell culture. LP and MP UV dose response curves were determined for (i) log inactivation of the virus in cell culture and (ii) UV-induced lesions per kilobase of viral DNA as measured by the PCR assay. Results show that LP and MP UV are equally effective at damaging the genome; MP UV is more effective at inactivating adenovirus in cell culture. This work suggests that the higher disinfection efficacy of MP UV cannot be attributed to a difference in DNA damage induction. These results enhance our understanding of the fundamental mechanisms of UV disinfection of viruses—especially double-stranded DNA viruses that infect humans—and improve the ability of the water treatment community to protect public health.  相似文献   

17.
Repair of DNA double-stranded breaks caused by ionizing radiation or cellular metabolization, homologous recombination, is an evolutionary conserved process controlled by RAD52 group genes. Genes of recombinational repair also play a leading role in the response to DNA damage caused by UV light. Cells with deletion in gene dds20 of recombinational repair were shown to manifest hypersensitivity to the action of UV light at lowered incubation temperature. Epistatic analysis revealed that dds20+ is not a member of the NER and UVER gene groups responsible for the repair of DNA damage induced by UV light. The Dds protein has functions in the Cds1-independent mechanism of UV damage tolerance of DNA.  相似文献   

18.
N A Berger  G W Sikorski 《Biochemistry》1981,20(12):3610-3614
Synthesis of DNA and poly(adenosine diphosphoribose) [poly(ADPR)] was examined in permeabilized xeroderma pigmentosum lymphoblasts (XP3BE) before and after UV irradiation and in the presence and absence of Micrococcus luteus UV endonuclease. M. luteus UV endonuclease had no effect on the level of DNA or poly(ADPR) synthesis in control, unirradiated cells. UV irradiation caused a decrease in replicative DNA synthesis without any significant change in poly(ADPR) synthesis. In UV-irradiated cells treated with M. luteus UV endonuclease, DNA synthesis was restored to a level slightly greater than in the unirradiated control cells, and poly(ADPR) synthesis increased by 2- to 4-fold. Time--course studies showed that the UV endonuclease dependent poly(ADPR) synthesis preceded the endonuclease-dependent DNA synthesis. Inhibition of endonuclease-dependent poly(ADPR) synthesis with 3-aminobenzamide, 5-methylnicotinamide, or theophylline produced a partial inhibition of the endonuclease-dependent DNA synthesis. Conversely, inhibition of the endonuclease-dependent DNA synthesis with dideoxythymidine triphosphate, phosphonoacetic acid, or aphidicolin had no effect on the endonuclease-dependent poly(ADPR) synthesis. These studies show that stimulation of poly(ADPR) synthesis in UV-irradiated cells occurs subsequent to the DNA strand breaks created by the specific action of the UV endonuclease on UV-irradiated DNA. The effect of the inhibitors of poly(ADPR) synthesis in UV-irradiated cells indicates that the endonuclease-stimulated DNA synthesis is dependent in part on the prior synthesis of poly(ADPR).  相似文献   

19.
The water-insoluble DNA film was successfully prepared by UV irradiation. The DNA film was stable in water. It could effectively accumulated the DNA-binding intercalating materials, such as ethidium bromide, dibenzo-p-dioxin and benzo[a]pyrene, in their aqueous solutions. On the other hand, DNA was immobilized onto nonwoven cellulose fabrics, also by the UV irradiation. The DNA immobilized cloth was found to bind silver ions. The DNA-cloth containing silver ion showed antibacterial activity. The water-insoluble DNA prepared by UV irradiation has a potential ability to serve as biomaterials for medical, engineering and environmental objects.  相似文献   

20.
A human cell line selected for cisplatin resistance (CPR) was irradiated with UV light and showed cross-resistance to UV light. Applying a modified chloramphenicol acetyltransferase assay, we observed that CPR cells acquired enhanced host cell reactivation of a transfected plasmid carrying UV damage. Gel mobility shift analysis indicated that two nuclear factors that recognize UV-modified DNA were overexpressed in CPR cells. In addition, factors that bind UV-modified DNA were independent from the factors that bind cisplatin-modified DNA. The significance of the identified binding factors, possibly DNA repair enzymes, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号