首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

2.
Edema factor (EF), a toxin from Bacillus anthracis (anthrax), possesses adenylyl cyclase activity and requires the ubiquitous Ca2+-sensor calmodulin (CaM) for activity. CaM can exist in three major structural states: an apo state with no Ca2+ bound, a two Ca2+ state with its C-terminal domain Ca2+-loaded, and a four Ca2+ state in which the lower Ca2+ affinity N-terminal domain is also ligated. Here, the interaction of EF with the three Ca2+ states of CaM has been examined by NMR spectroscopy and changes in the Ca2+ affinity of CaM in the presence of EF have been determined by flow dialysis. Backbone chemical shift perturbations of CaM show that EF interacts weakly with the N-terminal domain of apoCaM. The C-terminal CaM domain only engages in the interaction upon Ca2+ ligation, rendering the overall interaction much tighter. In the presence of EF, the C-terminal domain binds Ca2+ with higher affinity, but loses binding cooperativity, whereas the N-terminal domain exhibits strongly reduced Ca2+ affinity. As judged by chemical shift differences, the N-terminal CaM domain remains bound to EF upon subsequent Ca2+ ligation. This Ca2+ dependence of the EF-CaM interaction differs from that observed for most other CaM targets, which normally interact only with the Ca2+-bound CaM domains and become active following the transition to the four Ca2+ state.  相似文献   

3.
The different conformations induced by the binding of Mg2+ or Ca2+ to troponin C (TnC) and calmodulin (CaM) results in the exposure of various interfaces with potential to bind target compounds. The interaction of TnC or CaM with three affinity columns with ligands of either the synthetic peptide of troponin I (TnI) inhibitory region (residues 104-115), mastoparan (a wasp venom peptide), or fluphenazine (a phenothiazine drug) were investigated in the presence of Mg2+ or Ca2+. TnC and CaM in the presence of either Ca2+ or Mg2+ bound to the TnI peptide 104-115. The cation specificity for this interaction firmly establishes that the TnI inhibitory region binds to the high affinity sites of TnC (most likely the N-terminal helix of site III) and presumably the homologous region of CaM. Mastoparan interacted strongly with both proteins in the presence of Ca2+ but, in the presence of Mg2+, did not bind to TnC and only bound weakly to CaM. Fluphenazine bound to TnC and CaM only in the presence of Ca2+. When the ligands interacted with either proteins there was an increase in cation affinity, such that TnC and CaM were eluted from the TnI peptide or mastoparan affinity column with 0.1 M EDTA compared with the 0.01 M EDTA required to elute the proteins from the fluphenazine column. The interaction of these ligands with their receptor sites on TnC and CaM require a specific and spatially correct alignment of hydrophobic and negatively charged residues on these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.  相似文献   

5.
Edema factor (EF) and CyaA are calmodulin (CaM)-activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca(2+) concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca(2+) concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca(2+) concentrations. Despite the similarity in Ca(2+) sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100-fold higher affinity for CaM than EF. CaM has N- and C-terminal globular domains, each binding two Ca(2+) ions. CyaA can be fully activated by CaM mutants with one defective C-terminal Ca(2+)-binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca(2+)-CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.  相似文献   

6.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

7.
Externally added calmodulin (CaM) restored Ca2+ regulation for the tension development by skeletal muscle fibers of hamster and rabbit desensitized by the troponin C (TnC) extraction treatment. CaM produced this action by combining with the TnC-denuded sites in the fiber. However, the binding properties differed strikingly from TnC: unlike TnC, CaM binding required the continued presence of Ca2+ and the bound portion was completely released with EGTA in the physiological milieu. The maximal uptake was 1.7 g of CaM/kg of muscle in the present study. The apparent Ca2+ sensitivity for force development with 200 micrograms/ml CaM in the solution was lower than in the native fiber or in the TnC-loaded fiber. The apparent association constant for CaM binding to the TnC-denuded sites was found as 4.9 x 10(5) M-1, and the extrapolated maximum force (Fmax) with CaM was close to PO. The intrinsic CaM level in intact muscle was also measured and was 18.6 mg/kg, amounting to about 1% of the total TnC or the CaM uptake by TnC-denuded fibers. The intrinsic CaM was not dislodged by EDTA treatment, indicating tight binding and suggesting that it exists in a separate pool from the vacated TnC sites adsorbing externally added CaM. The stringent Ca+ dependence of the CaM adsorption to TnC sites in the regulatory complex in the fiber supports the view that the evolutionary replacement of residues in the amino terminus helix portion of the "EF-hand" motif of site IV may be critical for the functional specialization by TnC.  相似文献   

8.
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide [C28W(1b)] corresponding to the CaM-binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism in which an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the poorer effectiveness of oxidized CaM in activating the Ca2+ pump.  相似文献   

9.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

10.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

11.
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV.  相似文献   

12.
Peripherin/rds (p/rds), an integral membrane protein from the transmembrane 4 (TMF4) superfamily, possesses a multi-functional C-terminal domain that plays crucial roles in rod outer segment (ROS) disk renewal and structure. Here, we report that the calcium binding protein calmodulin (CaM) binds to the C-terminal domain of p/rds. Fluorescence spectroscopy reveals Ca2+-dependent association of CaM with a polypeptide corresponding to the C-terminal domain of p/rds. The fluorescence anisotropy of the polypeptide upon CaM titration yields a dissociation constant (KD) of 320 +/- 150 nM. The results of the fluorescence experiments were confirmed by GST-pull down analyses in which a GST-p/rds C-terminal domain fusion protein was shown to pull down CaM in a calcium-dependent manner. Moreover, molecular modeling and sequence predictions suggest that the CaM binding domain resides in a p/rds functional hot spot, between residues E314 and G329. Predictions were confirmed by peptide competition studies and a GST-p/rds C-terminal domain construct in which the putative Ca2+/CaM binding site was scrambled. This GST-polypeptide did not associate with Ca2+/CaM. This putative calmodulin domain is highly conserved between human, mouse, rat, and bovine p/rds. Finally, the binding of Ca2+/CaM inhibited fusion between ROS disk and ROS plasma membranes as well as p/rds C-terminal-domain-induced fusion in model membrane studies. These results offer a new mechanism for the modulation of p/rds function.  相似文献   

13.
The light chain binding domain of rat myosin 1d consists of two IQ-motifs, both of which bind the light chain calmodulin (CaM). To analyze the Myo1d ATPase activity as a function of the IQ-motifs and Ca2+/CaM binding, we expressed and affinity purified the Myo1d constructs Myo1d-head, Myo1d-IQ1, Myo1d-IQ1.2, Myo1d-IQ2 and Myo1dDeltaLV-IQ2. IQ1 exhibited a high affinity for CaM both in the absence and presence of free Ca2+. IQ2 had a lower affinity for CaM in the absence of Ca2+ than in the presence of Ca2+. The actin-activated ATPase activity of Myo1d was approximately 75% inhibited by Ca2+-binding to CaM. This inhibition was observed irrespective of whether IQ1, IQ2 or both IQ1 and IQ2 were fused to the head. Based on the measured Ca2+-dependence, we propose that Ca2+-binding to the C-terminal pair of high affinity sites in CaM inhibits the Myo1d actin-activated ATPase activity. This inhibition was due to a conformational change of the C-terminal lobe of CaM remaining bound to the IQ-motif(s). Interestingly, a similar but Ca2+-independent inhibition of Myo1d actin-activated ATPase activity was observed when IQ2, fused directly to the Myo1d-head, was rotated through 200 degrees by the deletion of two amino acids in the lever arm alpha-helix N-terminal to the IQ-motif.  相似文献   

14.
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.  相似文献   

15.
Calmodulin (CaM) and troponin C (TnC) are the most similar members of EF-hand family and show few differences in the primary structure. Here, we use mutants of troponin that mimic calmodulin and changes in temperature to investigate the factors that determine their specificity as regulatory proteins. Using a double mutant of troponin that resembles calmodulin in lacking both the N-terminal helix and KGK(91-93) we observe a small difference from troponin in binding to the erythrocyte Ca(2+)-ATPase, and an improvement in enzyme activation. A triple mutant, where in addition, the residues 88-90 are replaced with the corresponding sequence from calmodulin is equivalent to calmodulin in maximal activation, and it restores protein ability to increase Ca(2+) affinity for the enzyme. However, this mutant also binds less tightly (1/100) than calmodulin. Remarkably, a decrease in temperature has a more marked effect in protein binding than either mutation, reducing the difference in affinities to 18-fold, but without any improvement in their ability to increase Ca(2+) affinity for the enzyme. Spectroscopic analysis of hydrophobic domain exposure in EF-hand proteins was carried out using 8-anilino-1-naphthalenesulfonic acid (ANS). The probe shows a much higher fluorescence when bound to the complex Ca(4)-calmodulin than to Ca(4)-troponin. Decreasing the temperature exposes additional hydrophobic regions of troponin. Changing the Mg(2+) concentration does not affect their bindings to the enzyme. It is suggested that the requirements for troponin to mimic calmodulin in binding to the target enzyme, and those for activating it, are met by different regions of the protein.  相似文献   

16.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

17.
Ca(2+) binds to calmodulin (CaM) and triggers the interaction of CaM with its target proteins; CaM binding proteins (CaMBPs) can also regulate the metal binding to CaM. In the present paper, La(3+) binding to CaM was studied in the presence of the CaM binding peptides, Mastoparan (Mas) and Mas X, using ultrafiltration and titration of fluorescence. Ca(2+) binding was used as an analog to understand La(3+) binding in intact CaM and isolated N/C-terminal CaM domain of metal-CaM binary system and metal-CaM-CaMBPs ternary system. Mas/Mas X increased binding affinity of La(3+) to CaM by 0.5 approximately 3 orders magnitude. The metal ions binding affinity to the C-terminal or the N-terminal CaM domain suggested that in the first phase of binding process both Ca(2+) and La(3+) bind to C-terminal of CaM in the presence of Mas/Mas X. In the presence of CaM binding peptides, La(3+) binding preference was substantially altered from the metal-CaM binary system where La(3+) slightly preferred binding to the N-terminal sites of CaM. Our results will be helpful in understanding La(3+) interactions with CaM in the biological systems.  相似文献   

18.
The Ca(2+)-dependence of structural changes in troponin-C (TnC) has been detected by monitoring the fluorescence from TnC labeled at Methionine-25, in the NH2-terminal domain, with danzylaziridine (TnC-DANZ) and then exchanged for endogenous TnC in glycerinated single fibers. The fluorescence-pCa relation obtained from fibers stretched to a sarcomere length greater than 4.0 microns evidenced two transitions: a small one, attributable to the binding of Ca2+ to the high affinity, Ca(2+)-Mg(2+)-binding sites of TnC; and a large one, attributable to the binding of Ca2+ to the low affinity, Ca(2+)-specific binding sites of TnC. In the fluorescence-pCa relation determined with fibers set to a sarcomere length of 2.4 microns, hence obtained in the presence of cycling cross-bridges, the large transition had the same Ca(2+)-dependence as did the development of tension. These results indicate that the NH2-terminal globular domain of TnC is modified by the binding of Ca2+ to sites located in both globular domains and that the structural changes in TnC resulting from the binding of Ca2+ to the low-affinity sites, but not to the high-affinity sites, are directly associated with the triggering of contraction.  相似文献   

19.
Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.  相似文献   

20.
A new derivative of bisbenzylisoquinoline (berbamine type): 0-(4-ethoxylbutyl) berbamine (EBB) was found to possess powerful and specific calmodulin (CaM) inhibitory properties. It inhibited CaM-stimulated Ca2+-Mg2+-ATPase in human erythrocyte membrane with IC50 value of 0.35 microM compared to that of 60 microM of berbamine. CaM-independent basal Ca2+-Mg2+-ATPase, Na+-K+-ATPase and Mg2+-ATPase were not effect at 1.0 microM of EBB at which CaM-dependent Ca2+-Mg2+-ATPase was already potently inhibited. The inhibition of CaM-dependent Ca2+-Mg2+-ATPase was competitive with respect to CaM. Higher amount of CaM reversed the inhibition caused by higher concentration of EBB. Using dansyl-CaM (D-CaM), it was shown that EBB binds directly to CaM and caused a conformational change of CaM polypeptide chain. From fluorescence titration curve we obtained evidence that in the presence of Ca2+, CaM has two specific binding sites for EBB and additional unspecific binding sites. The Ca2+-dependent binding sites of EBB on CaM were novel region different from the binding sites for TFP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号