首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of rat dams to hypergravity during pregnancy is associated with increased pup mortality, reduced food intake, and decreased rates of glucose oxidation and lipogenesis in mammary tissue. We hypothesized that increased pup mortality is due to changes in maternal metabolism and not to reduced food intake of dams. Effects of hypergravity on rate of glucose oxidation and lipogenesis in mammary, liver, and adipose tissue were measured in rat dams centrifuged at 2.0 G [hypergravity (HG)], kept at 1.0 G (control), or fed to match the intake of HG rats (pair fed) from gestation day 11 (G11) until G21 or postpartum day 3 (P3). Body weight, percent body fat, metabolizable energy, and nitrogen balance were significantly less in HG dams compared with controls (P<0.05); however, these factors were not different between HG and pair-fed dams. By P3, 100% of control and pair-fed pups survived, while only 49% of HG pups survived. At G21, rates of glucose oxidation and lipogenesis in mammary and adipose tissue were less in HG than in control and pair-fed dams (P<0.1 and P<0.05). In liver, at G21, the rate of lipogenesis was greater in HG than control and pair-fed dams (P<0.01); at P3, lipogenesis was greater in control than HG and pair-fed dams (P<0.05). Gene expression of ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase increased in liver from pregnancy to lactation in control and pair-fed dams but not HG dams. Thus reduced food intake and body mass due to hypergravity exposure cannot explain the dramatic decrease in HG pup survival.  相似文献   

2.
Insulin binding to liver membranes has been studied in term fetuses of rats fed ethanol-containing liquid diet during pregnancy . Pair-fed and ad libitum-fed controls received liquid diet in which maltose-dextrins were substituted isocalorically for ethanol. Food consumption and body weigh gain of ethanol- imbibing dams were 35% and 70% less than their ad libitum counterparts respectively. Ethanol-fed rats also exhibited less gain in body weight than pair-fed controls despite isocalorically equivalent food intake. The number of live pups was not different among the various groups; however, liver weight of fetuses exposed to ethanol in utero was 47% less than those of the pups of ad libitum control dams and 28% less than those of the offspring of pair-fed control rats. Insulin binding to liver membranes of fetuses exposed to ethanol in utero was lower than that of ad libitum controls but was not significantly different from that of the pair-fed control animals. Average affinity profiles showed a reduction in K at all levels of receptor occupancy in the fetuses of ethanol-fed rats. For fetuses of the pair-fed group, K was reduced only at fractional occupancy below 20% but not at higher fractional occupancy. Because of the similarity of insulin binding in the fetuses of the ethanol-fed rats and their pair-fed counterparts, effects of ethanol on insulin binding cannot account for the reduced hepatic glycogen stores previously reported in term fetuses.  相似文献   

3.
Large differences in the composition of diet between early development and adulthood can have detrimental effects on obesity risk. We examined the effects of an intermittent high fat/sucrose diet (HFS) on satiety hormone and serum metabolite response in disparate diets. Wistar rat pups were fed control (C), high prebiotic fiber (HF) or high protein (HP) diets (weaning to 16 weeks), HFS diet challenged (6 weeks), and finally reverted to their respective C, HF, or HP diet (4 weeks). At conclusion, measurement of body composition and satiety hormones was accompanied by (1)H NMR metabolic profiles in fasted and postprandial states. Metabolomic profiling predicted dietary source with >90% accuracy. The HF group was characterized by lowest body weight and body fat (P < 0.05) and increased satiety hormone levels (glucagon-like peptide 1 and peptide-YY). Regularized modeling confirmed that the HF diet is associated with higher gut hormone secretion that could reflect the known effects of prebiotics on gut microbiota and their fementative end products, the short chain fatty acids. Rats reared on a HF diet appear to experience fewer adverse effects from an intermittent high fat diet in adulthood when rematched to their postnatal diet. Metabolite profiles associated with the diets provide a distinct biochemical signature of their effects.  相似文献   

4.
M Mori  J F Wilber  T Nakamoto 《Life sciences》1983,32(14):1607-1612
Liquid protein diet (LPD) has been shown previously to produce maternal and fetal weight loss and fetal congenital anomalies, including cataracts and craniofacial malformations. Therefore, to examine the effects of LPD in pregnancy upon the central nervous system of pups, pregnant dams were fed either a 20% casein diet ad libitum, a 20% LPD, or pair-fed with a 20% casein diet. LPD was associated with significant maternal weight loss, and pups had significantly lower birth weights (5.14 +/- 0.64) than pups from the pair-fed controls (5.70 +/- 0.46, p less than 0.05). Total brain protein content was reduced significantly in pups of both sexes from pregnant fed LPD. Moreover, the concentrations of two brain peptides neurotransmitters, thyrotropin-releasing hormone (TRH), and its biologically active metabolite, histidyl-proline diketopiperazine Cyclo (His-Pro), were elevated in the pups from LPD-fed mothers. In contrast, there was no significant difference in brain protein or brain peptides in pups from pair-fed mothers vs. pups from mothers fed ad libitum. These data suggest that qualitative alterations of the protein component in maternal dietary composition have deleterious effects upon the ontogeny of the rat fetal CNS, as reflected by reduced total protein and elevated concentrations of TRH and Cyclo (His-Pro).  相似文献   

5.
Alterations in sialic acid and fucose contents of different populations of epithelial cells have been studied in suckling and adult rat intestine. The progression of cells from crypt base to villus tip is associated with an increase in sialic acid and a decrease in fucose levels of the cells in adult rats. In suckling pups, sialic acid is uniformly distributed along the length of villi, and fucose is richly (P less than 0.01) present in cryptic cells compared to that at the villus tip. Adult-type changes in sialylation and fucosylation of enterocytes across the crypt-villus axis were precociously produced by cortisone administration to suckling pups. Thyroxine treatment was less effective in influencing the glycosylation process in rat intestine.  相似文献   

6.
While protein is regarded as the most satiating macronutrient, many studies have employed test meals that had very high and unsustainable protein contents. Furthermore, the comparative responses between lean and obese subjects and the relationships between energy intake suppression and gut hormone release remain unclear. We evaluated the acute effects of meals with modest variations in 1) fat, protein, and carbohydrate content and 2) protein load on gastrointestinal hormones, appetite, and subsequent energy intake in lean and obese subjects. Sixteen lean and sixteen obese men were studied on four occasions. Following a standardized breakfast, they received for lunch: 1) high-fat (HF), 2) high-protein (HP), 3) high-carbohydrate/low-protein (HC/LP), or 4) adequate-protein (AP) isocaloric test meals. Hunger, fullness, and gut hormones were measured throughout, and at t = 180 min energy intake at a buffet meal was quantified. In lean subjects, hunger was less and fullness greater following HF, HP, and AP compared with HC/LP meals, and energy intake was less following HF and HP compared with HC meals (P < 0.05). In the obese subjects, hunger was less following HP compared with HF, HC/LP, and AP meals, and energy intake was less following HP and AP compared with HF and HC meals (P < 0.05). There were no major differences in hormone responses to the meals among subject groups, but the CCK and ghrelin responses to HP and AP were sustained in both groups. In conclusion, HP meals suppress energy intake in lean and obese subjects, an effect potentially mediated by CCK and ghrelin, while obese individuals appear to be less sensitive to the satiating effects of fat.  相似文献   

7.
The biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells was studied by following the incorporation of l-[1,5,6-(3)H]fucose, given intraperitoneally with and without chase, into Golgi, lateral basal and microvillus membranes. Each membrane fraction showed distinct kinetics of incorporation of labelled fucose and was differently affected by the chase, which produced a much greater decrease in incorporation of label into Golgi and microvillus than into lateral basal membranes. The kinetic data suggest a redistribution of newly synthesized glycoproteins from the site of fucosylation, the Golgi complex, directly into both lateral basal and microvillus membranes. The observed biphasic pattern of label incorporation into the microvillus membrane fraction may be evidence for a second indirect route of incorporation. The selective effect of the chase suggests the presence of two different pools of radioactive fucose in the Golgi complex that differ in (1) their accessibility to dilution with non-radioactive fucose, and (2) their utilization for the biosynthesis of membrane glycoproteins subsequently destined for either the microvillus or the lateral basal parts of the plasmalemma. The radioactively labelled glycoproteins of the different membrane fractions were separated by sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis and identified by fluorography. The patterns of labelled glycoproteins in Golgi and lateral basal membranes were identical at all times. At least 14 bands could be identified shortly after radioactive-fucose injection. Most seemed to disappear at later times, although one of them, which was never observed in microvillus membranes, increased in relative intensity. All but two of the labelled glycoproteins present in the microvillus membrane corresponded to those observed in Golgi and lateral basal membranes shortly after fucose injection. The patterns of labelled glycoproteins in all membrane fractions were little affected by the chase. These data support a flow concept for the insertion of most surface-membrane glycoproteins of the intestinal villus cells.  相似文献   

8.
The aim of this study was to investigate the effect of a high-fat (HF)/energy diet on the intestinal microbiota, the alkaline phosphatase (AP) activity, and related parameters of growth and obesity during the suckling and weaning periods in male Sprague-Dawley rats. From birth, nutrition in suckling pups was manipulated by feeding rat dams either HF or a standard diet, and then after weaning, by exposure of experimental pups to the HF, and control rats to normal diet. On days 15, 20, 40 the numbers of 2 microbial groups, i.e., Bacteroides/Prevotella (BAC) and the Lactobacillus/Enterococcus (LAB) in the jejunum, were determined by fluorescent in situ hybridization technique, and the AP activity was assayed histochemically. During all investigated periods HF pups gained body fat more rapidly than control animals, but from weaning they displayed significantly stunted growth resulting in final body weight loss. Obesity in HF rats was also accompanied by higher LAB and lower numbers of BAC and with permanently higher AP activity. Correlation of these data showed significant negative correlation between LAB, AP, and weight gain and energy efficiency, and significant positive correlation of BAC and AP activity with body fat. These data support the concept that postnatal nutritional experience represents an important factor affecting the ontogeny of intestinal microbial communities and intestinal function. These acquired changes could be a component of regulatory mechanisms involved in adverse and/or positive consequences of HF diet for adiposity, body weight, and energy-balance control in later life.  相似文献   

9.
Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (-12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.  相似文献   

10.
We present evidence of a change from sialylation to fucosylation of intestinal microvillus membrane oligosaccharides during postnatal development in the rat. The initial high sialic acid to fucose molar ratio in native and delipidated membranes was completely reversed after weaning. The specific binding of 125I-labeled wheat germ agglutinin to neuraminidase-sensitive sites in the native and delipidated membranes decreased markedly from early suckling to weaning ages. The binding of 125I-labeled Ulex europeus agglutinin I showed an age-related pattern opposite to that of wheat germ agglutinin. The changes in membrane reactivities to these lectins were entirely consistent with the existence of a developmentally-controlled shift from terminal sialyl to fucosyl substitutions among various glycoconjugate classes. This could play a key role on the functional transformation experienced by the intestinal epithelium of suckling rats.  相似文献   

11.
Maternal overnutrition prior to and during gestation causes pronounced metabolic dysfunction in the adult offspring. However, less is known about metabolic adaptations in the offspring that occur independently of postnatal growth and nutrition. Therefore, we evaluated the impact of excess maternal dietary lipid intake on the in utero programming of body composition, hepatic function, and hypothalamic development in newborn (P0) offspring. Female mice were fed a low-fat (LF) or high-fat (HF) diet and were mated after 4, 12, and 23 wk. A subset of the obese HF dams was switched to the LF diet during the second (DR2) or third (DR3) pregnancies. The HF offspring accrued more fat mass than the LF pups, regardless of duration of maternal HF diet consumption or prepregnancy maternal adiposity. Increased neonatal adiposity was not observed in the DR3 pups. Liver weights were reduced in the HF offspring but not in the DR2 or DR3 pups. Offspring hepatic triglyceride content was reduced in the HF pups, but hepatic inflammation and expression of lipid metabolism genes were largely unaffected by maternal diet. Maternal diet did not alter the hypothalamic expression of orexigenic and anorexigenic neuropeptides in the offspring. Thus, the intrauterine programming of increased neonatal adiposity and reduced liver size by maternal overnutrition is evident in mice at birth and occurs prior to the development of maternal obesity. These observations demonstrate that dietary intervention during pregnancy minimizes the deleterious effects of maternal obesity on offspring body composition, potentially reducing the offsprings' risk of developing obesity and related diseases later in life.  相似文献   

12.
We evaluated the effect of a high-protein diet (HP) on pregnancy, lactational and rearing success in mice. At the time of mating, females were randomly assigned to isoenergetic diets with HP (40% w/w) or control protein levels (C; 20%). After parturition, half of the dams were fed the other diet throughout lactation resulting in four dietary groups: CC (C diet during gestation and lactation), CHP (C diet during gestation and HP diet during lactation), HPC (HP diet during gestation and C diet during lactation) and HPHP (HP diet during gestation and lactation). Maternal and offspring body mass was monitored. Measurements of maternal mammary gland (MG), kidney and abdominal fat pad masses, MG histology and MG mRNA abundance, as well as milk composition were taken at selected time points. HP diet decreased abdominal fat and increased kidney mass of lactating dams. Litter mass at birth was lower in HP than in C dams (14.8 v. 16.8 g). Dams fed an HP diet during lactation showed 5% less food intake (10.4 v. 10.9 g/day) and lower body and MG mass. On day 14 of lactation, the proportion of MG parenchyma was lower in dams fed an HP diet during gestation as compared to dams fed a C diet (64.8% v. 75.8%). Abundance of MG α-lactalbumin, β-casein, whey acidic protein, xanthine oxidoreductase mRNA at mid-lactation was decreased in all groups receiving an HP diet either during gestation and/or lactation. Milk lactose content was lower in dams fed an HP diet during lactation compared to dams fed a C diet (1.6% v. 2.0%). On days 14, 18 and 21 of lactation total litter mass was lower in litters of dams fed an HP diet during lactation, and the pups' relative kidney mass was greater than in litters suckled by dams receiving a C diet. These findings indicate that excess protein intake in reproducing mice has adverse effects on offspring early in their postnatal growth as a consequence of impaired lactational function.  相似文献   

13.
The absorption of 125I-labeled BSA and gamma-globulin was significantly (P less than 0.01) elevated in UN pups compared to the controls. Administration of pharmacological doses of cortisone, thyroxine, and insulin markedly (P less than 0.001) reduced the absorption of BSA and gamma-globulin in UN pups. There was no significant difference in the binding of 125I-labeled BSA and gamma-globulin to microvillus membrane in the control and experimental animals. However, the degradation of labeled BSA and gamma-globulin by luminal content was considerably higher (55-70%) in controls compared to UN pups. This suggested that observed increase in the absorption of proteins in nutritionally deprived pups was unrelated to their binding to the microvillus surface but presumably it is a consequence of reduced luminal degradation together with delayed maturational development as suggested by the pattern of brush border enzymes in the UN intestinal tissue.  相似文献   

14.
There have been many trials describing the effects of polyunsaturated fatty acids (PUFA) on fecundity, neonatal development, and maternal behavior in humans, but few controlled studies in rodents. We examined the effects of a maternal diet high in omega 3 (N-3) or omega 6 (N-6) PUFA on NIH Swiss mice. Female mice were ad libitum fed one of three complete and balanced diets (N-3, enriched in menhaden oil; N-6, enriched in corn oil; C, control diet, Purina 5015) from age 4 wk until the end of the study. Mice were bred at approximately 19 wk and 27 wk of age, providing a total of 838 pups from 129 litters in two experiments. After weaning their pups from parity 1, behavior of dams was assessed on elevated-plus and open-field mazes. Although the fraction of male pups from the N-3 and C groups was not different from 0.5, dams on the N-6 diet birthed more daughters than sons (213 vs. 133; P < 0.001). Although maternal stress has been reported to favor birth of daughters, the behavior of N-6 dams was not different from controls. By contrast, the N-3 dams displayed greater anxiety, spending less time in the open arms and more time in the closed arms of the elevated maze and traveling less distance and exhibiting less exploratory behavior in the open field (P < 0.05). N-3 dams tended to produce smaller litters than C dams, and N-3-suckled pups gained less weight (P < 0.05). In conclusion, the N-3 diet had negative effects on murine fecundity and maternal behavior, whereas the N-6 diet favored birth of daughters.  相似文献   

15.
The effects of obesity and a high-fat (HF) diet on whole body and tissue-specific metabolism of lactating dams and their offspring were examined in C57/B6 mice. Female mice were fed low-fat (LF) or HF diets before and throughout pregnancy and lactation. HF-fed mice were segregated into lean (HF-Ln) and obese (HF-Ob) groups before pregnancy by their weight gain response. Compared to LF-Ln dams, HF-Ln, and HF-Ob dams exhibited a greater positive energy balance (EB) and increased dietary fat retention in peripheral tissues (P < 0.05). HF-Ob dams had greater dietary fat retention in liver and adipose compared to HF-Ln dams (P < 0.05). De novo synthesized fat was decreased in tissues and milk from HF-fed dams compared to LF-Ln dams (P < 0.05). However, less dietary and de novo synthesized fat was found in the HF-Ob mammary glands compared to HF-Ln (P < 0.05). Obesity was associated with reduced milk triglycerides relative to lean controls (P < 0.05). Compared to HF diet alone obesity has additional adverse affects, impairing both lipid metabolism as well as milk fat production. Growth rates of LF-Ln litters were lower than HF-Ln and HF-Ob litters (P < 0.05). Total energy expenditure (TEE) of HF-Ob litters was reduced relative to HF-Ln litters, whereas their respiratory exchange ratios (RERs) were increased (P < 0.05). Collectively these data show that consumption of a HF diet significantly affects maternal and neonatal metabolism and that maternal obesity can independently alter these responses.  相似文献   

16.
The luminal surface of enterocytes is covered with glycocalyx which is rich in glycoproteins. Ethanol ingestion is shown to induce morphological and biochemical changes in the intestine. In this study, the effect of ethanol ingestion on membrane glycoproteins has been investigated. Chemical analysis of microvillus membranes revealed an increase in hexose and sialic acid contents, but a reduction in fucose levels in ethanol-fed rats compared with controls. The observed changes were apparent in animals fed with ethanol for 35–56 days compared with controls. Lectin-binding assay indicated an increase in Wheat germ agglutinin (affinity for GlcNAc/sialic acid) and a decrease in Aleuria aurantia (affinity for α-l-fucose) reactivity of brush borders in ethanol-fed animals for 4–8 weeks. Western blot analysis using biotin-labeled Wheat germ agglutinin revealed increased binding to proteins of Mr 66–205 kDa in ethanol-fed rats compared with controls. The binding of Aleuria aurantia to membrane proteins of Mr 97–185 kDa was reduced in ethanol-fed animals. These findings suggest that long-term ethanol feeding modulates the sialylation and fucosylation processes of microvillus membrane proteins in rat intestine. This could affect the intestinal digestive and absorptive functions in chronic alcoholism.  相似文献   

17.
The high-protein content of formula offered to low-birth weight babies is suspected to increase the risk of obesity later in life. This study assesses the immediate and subsequent effects of a protein intake in excess during suckling on hormonal and metabolic status and adipose tissue features in a porcine model of intrauterine growth restriction. Piglets were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to day 28. A subset of piglets was killed at day 28. After weaning, the remaining piglets had free access to the same solid high-fat diet until day 160. From day 2 to day 28, HP piglets had a greater daily weight gain (P < 0.05). Relative weight of perirenal adipose tissue (PAT), adipocyte mean diameters, activities of lipogenic enzymes in PAT and subcutaneous adipose tissue (SCAT), and leptinemia were lower (P < 0.05) in HP piglets than in AP piglets. Genes related to glucose utilization and lipid anabolism in PAT and SCAT were (P < 0.05) or tended (P < 0.1) to be downregulated in HP piglets. At day 160, adipocytes were enlarged, whereas lipogenic rates in adipocytes were reduced (P < 0.05) in SCAT of HP compared with AP pigs. Percent body fat, mRNA levels of genes controlling lipid metabolism, and plasma concentrations of hormones and metabolites were similar in HP and AP pigs. In conclusion, a HP neonatal formula induced a temporary reduction of adiposity and changed adipocyte physiology at peripubertal age.  相似文献   

18.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   

19.
Rats were maintained on nutritionally complete diets enriched in unsaturated (corn oil) or saturated (butter fat) triacylglycerols. After 6 weeks, significant differences in the lipid composition and fluidity of a number of intestinal membranes were observed. The corn oil diet (enriched mainly in linoleic acid) increased the overall unsaturation of the acyl chains and enhanced the lipid fluidity, as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, of enterocyte microvillus and basolateral membranes and of colonocyte basolateral membranes. Concomitantly, the cholesterol content and the cholesterol/phospholipid molar ratio were increased in the microvillus but not in the basolateral membranes. The increased cholesterol in ileal microvillus membranes can result from enhanced cellular biosynthesis, since ileal slices from rats fed the unsaturated diet incorporated [14C]octanoate more rapidly into digitonin-precipitable sterol. Increased fluidity of the enterocyte microvillus and basolateral membranes, respectively, enhanced the enzyme specific activities of p-nitrophenylphosphatase and (Na+ + K+)-dependent adenosine triphosphatase. The results indicate that the lipid composition, fluidity and enzyme activities of intestinal plasma membranes can be altered by dietary means. Moreover, rat enterocytes possess regulatory mechanisms which modulate the cholesterol content of the microvillus membranes so as to mitigate changes in lipid fluidity.  相似文献   

20.
The aim of this study was to analyze zinc (Zn), calcium (Ca) and phosphorus (P) contents in milk and the lactational performance in rats fed different Ca levels. Female Wistar rats were fed during pregnancy and lactation with experimental diets containing 20% protein and high (0.90%, HCa), normal (0.60%, NCa) or low (0.20%, LCa) Ca levels. Milk samples were collected after 15 days to determine the milk mineral composition. Pup weight was recorded from birth to weaning (litter size: 6-8 pups) to determine weight gain and calculate milk production. At delivery there were no significant differences in the body weight of the pups between the groups, but at day 15, the LCa group showed lower values than both NCa and HCa groups (p<0.05). The weight gain of the LCa group was significantly lower than of the HCa and NCa groups, between delivery and day 5 (p<0.05). This reduced rate of weight gain led to the LCa group reaching weaning weight later than the other groups. Milk production (g/pup/day) was significantly lower when dams were fed the LCa than the NCa and HCa diets (p<0.05). There were no significant differences among the groups in milk Ca, P and Zn levels and Ca/P ratio. The body mineral composition of the pups at birth did not differ between the groups; at weaning, however, both LCa and HCa groups had lower element contents than the NCa group (p<0.05). In conclusion, dams fed with a diet containing low Ca levels produced smaller volumes of milk and their pups reached weaning weights later than the other groups. As the milk mineral composition was not affected, it can be hypothesized that in dams fed low dietary Ca, the smaller milk yield might have been a way of maintaining milk quality. High Ca levels affected neither pregnancy outcome nor lactational performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号