首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After 72 h, F106X produced less ethanol than xylitol, while F106KR produced ethanol at a constant yield of 0.36 g/g for all xylose concentrations. The xylose consumption rate and ethanol productivity increased with increasing xylose concentrations in F106KR strain. In particular, F106KR produced 77.6g/L ethanol from 220 g/L xylose and converted 100 g/L glucose and 100g/L xylose into 89.0 g/L ethanol in 72h, but the corresponding values of F106X strain are 7.5 and 65.8 g/L. The ethanol yield of F106KR from glucose and xylose was 0.42 g/g, which was 82.3% of the theoretical yield. These results suggest that the F106KR strain is an excellent producer of ethanol from xylose.  相似文献   

2.
玉米出籽率全基因组关联分析   总被引:1,自引:0,他引:1  
出籽率与玉米单穗产量密切相关,其遗传机制的解析对玉米高产育种具有重要意义。本研究利用309份玉米自交系为关联群体,利用固定和随机模型交替概率统一(FarmCPU)、压缩混合线性模型(CMLM)和多位点混合线性模型(MLMM)对2017年和2019年河南新乡原阳、周口郸城、海南三亚以及最佳线性无偏估计值(BLUE)的出籽率进行全基因组关联分析。共鉴定18个与出籽率显著关联的SNP(P<1.72E-05)。其中,FarmCPU、CMLM和MLMM方法分别检测到14个、5个和2个位点。S2_87292896利用CMLM和MLMM方法在BLUE环境和2019年原阳均检测到;在BLUE环境,S2_111319193利用FarmCPU和CMLM方法均检测到;在2017年郸城,S5_93814060利用CMLM和MLMM方法均检测到。5个位点即S1_304584425、S5_11751831、S5_93814060、S5_186385476和S8_94354503的表型变异解释率介于10.09%~15.43%之间,为出籽率的主效SNP。与前人研究结果比较发现,Bin1.08、Bin2.06、Bin4.09和Bin6.05可能是影响出籽率的重要区段。共挖掘32个候选基因,其中E3泛素蛋白连接酶UPL1、DEAD盒ATP依赖的RNA解旋酶RH52、蛋白激酶同源子4、SNARE互作蛋白KEULE和延伸因子EF1A等可能是影响出籽率的重要基因。  相似文献   

3.
4.
We investigated the effects of a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and αvβ3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-κB.  相似文献   

5.
6.
The levels (Abt) and relative affinity (KR) of antibody produced to protein antigens injected in saline have been measured in the 22nd generation of the Biozzi high (Ab/H) and low (Ab/L) antibody-producing mice. No significant differences in affinity were observed between the two lines of mice (p 0.10) but the levels of antibody (Abt) differed significantly (p 0.0025) when immunized with antigen in saline; however, both Ab/H and Ab/L mice were able to mount a high affinity response to protein antigens injected in Freund's complete adjuvant. These results substantiate earlier observations that in mice, antibody affinity (KR) and antibody level (Abt) are under independent genetic control.  相似文献   

7.
影响枯草芽胞杆菌和荧光假单胞菌原生质体再生的因素   总被引:1,自引:0,他引:1  
目的:为了提高再生率,对影响革兰阳性菌枯草芽胞杆菌KR株和革兰阴性菌荧光假单胞菌B13株原生质体再生的因素进行研究。方法:研究了酶解时间,再生方式,再生培养基中稳定剂的种类,Ca^2+、Mg^2+、琥珀酸钠、L-色氨酸的浓度及培养基的放置时间对KR和B13株原生质体再生的影响。结果:对KR株酶解20min,采用夹层培养,再生培养基中加入0.6mol/L蔗糖、0.03mol/L Ca^2+、0.02mol/L Mg^2+、0.3mol/L琥珀酸钠、0.2mol/L L-色氨酸,培养基在37℃放置72h,原生质体再生率可达42.7%;对B13酶解15min,采用夹层培养,培养基中加入0.6mol/L NaCl、0.02mol/L Ca^2+、0.01mol/L Mg^2+、0.3mol/L琥珀酸钠、0.1mol/L L-色氨酸,培养基在37℃放置48h,原生质体再生率可达15.3%。结论:影响革兰阳性菌枯草芽胞杆菌KR株和革兰阴性菌荧光假单胞菌B13株原生质体再生的因素是不同的。  相似文献   

8.
The objective of the present study was to develop a new selective, differential and cost-effective medium (Kim and Rhee — KR-medium) for the isolation of Cronobacter spp. In this new medium, which contained salicin as a differential agent, Cronobacter spp. generated typical colonies with characteristic violet-colored centers surrounded by a transparent to opalescent border, and the growth of other microorganisms (40 strains) was inhibited or produced visually distinguishable colonies. Using healthy and heat- and desiccation-injured cells, the quantity of nutrients was adjusted to determine the optimal recovery rate, selectivity, differentiation and cost-effectiveness. Peptone and salicin concentrations were established as 10 and 8 g/L, respectively. The KR medium was then validated using salicin fermenting organisms, including Cronobacter spp. (52 strains), Enterobacter cloacae (50 strains) and Klebsiella pneumonia (10 strains) isolated from clinical and food specimens. All strains of Cronobacter spp. produced typical colonies and other salicin fermenting organisms were easily distinguishable from Cronobacter spp. with the exception of 2 E. cloacae strains. The verification of KR medium was carried out in powdered infant formula artificially inoculated with healthy, heat-injured, and desiccation-injured Cronobacter spp. and the expected typical colonies were appeared. The KR medium had a high specificity (98%) and sensitivity (100%), with no false-negative results. Moreover, we show that the cost of the KR medium is much lower than that of other selective and differential media. The use of the KR medium for the selective isolation of Cronobacter spp. in laboratories and food industry settings may therefore lessen the financial burden of Cronobacter spp. detection.  相似文献   

9.
In this report, we present data on heterogeneity of rat NK cells utilizing a combination of antibody and lectin-binding characteristics. Among NKR-P1bright NK cells, two discrete populations characterized as Lycopersicon esculentum lectin (L.E.)bright (60 to 80%) and L.E.dim (20 to 40%) were identified by flow cytometry. Comparison of the morphology of sorted NKR-P1bright/L.E.bright and NKR-P1bright/L.E.dim cells indicated that both were greater than 90% LGL. An analysis of the functional capabilities of the sub-populations indicated that NKR-P1bright/L.E.bright NK cells were more efficient in lysis of YAC-1 target cells (1743 LU20/10(7) cells) than were NKR-P1bright/L.E.dim cells (504 LU20/10(7) cells). Conversely, NKR-P1bright/L.E.dim NK cells were much more efficient at lysis of antibody-sensitized erythrocytes (antibody-dependent cellular cytotoxicity (ADCC)) (1412 LU20/10(7) cells) than were NKR-P1bright/L.E.bright cells (165 LU20/10(7) cells). Lysis of antibody sensitized P815 target cells yielded similar results as NKR-P1bright/L.E.dim cells and NKR-P1bright/L.E.bright cells had 905 LU20/10(7) and 189 LU20/10(7), respectively. Additional experiments indicated that NKR-P1bright/L.E.bright NK cells had the capacity to trigger lytic activity via NKR-P1 whereas NKR-P1bright/L.E.dim NK cells did not. NKR-P1bright/L.E.bright sorted cells had a greater capacity to form conjugates with YAC-1 target cells than did NKR-P1bright/L.E.dim sorted cells. Conversely, NKR-P1bright/L.E.dim NK cells were demonstrated to form E-A rosettes whereas the NKR-P1bright/L.E.bright NK cells were not. Additional experiments indicated that tomato lectin itself was not responsible for the differences in reverse ADCC activity or ADCC activity among the subsets. However, lysis of YAC-1 target cells was modulated to some degree by the lectin. These data indicate that NKR-P1bright/L.E.bright and NKR-P1bright/L.E.dim subpopulations of rat NK cells have different capacities for: 1) triggering through NKR-P1; and 2) E-A rosette formation and lysis of antibody-sensitized target cells by ADCC.  相似文献   

10.
To delineate factors involved in NK cell development, we established an in vitro system in which lineage marker (Lin)-, c-kit+, Sca2+ bone marrow cells differentiate into lytic NK1.1+ but Ly49- cells upon culture in IL-7, stem cell factor (SCF), and flt3 ligand (flt3L), followed by IL-15 alone. A comparison of the ability of IL-7, SCF, and flt3L to generate IL-15-responsive precursors suggested that NK progenitors express the receptor for flt3L. In support of this, when Lin-, c-kit+, flt3+ or Lin-, c-kit+, flt3- progenitors were utilized, 3-fold more NK cells arose from the flt3+ than from the flt3- progenitors. Furthermore, NK cells that arose from flt3- progenitors showed an immature NK1.1dim, CD2-, c-kit+ phenotype as compared with the more mature NK1.1bright, CD2+/-, c-kit- phenotype displayed by NK cells derived from flt3+ progenitors. Both progenitors, however, gave rise to NK cells that were Ly49 negative. To test the hypothesis that additional marrow-derived signals are necessary for Ly49 expression on developing NK cells, flt3+ progenitors were grown in IL-7, SCF, and flt3L followed by culture with IL-15 and a marrow-derived stromal cell line. Expression of Ly49 molecules, including those of which the MHC class I ligands were expressed on the stromal or progenitor cells, as well as others of which the known ligands were absent, was induced within 6-13 days. Thus, we have established an in vitro system in which Ly49 expression on developing NK cells can be analyzed and possibly experimentally manipulated.  相似文献   

11.
Javidpour P  Korman TP  Shakya G  Tsai SC 《Biochemistry》2011,50(21):4638-4649
Type II polyketides include antibiotics such as tetracycline and chemotherapeutics such as daunorubicin. Type II polyketides are biosynthesized by the type II polyketide synthase (PKS) that consists of 5-10 stand-alone domains. In many type II PKSs, the type II ketoreductase (KR) specifically reduces the C9-carbonyl group. How the type II KR achieves such a high regiospecificity and the nature of stereospecificity are not well understood. Sequence alignment of KRs led to a hypothesis that a well-conserved 94-XGG-96 motif may be involved in controlling the stereochemistry. The stereospecificity of single-, double-, and triple-mutant combinations of P94L, G95D, and G96D were analyzed in vitro and in vivo for the actinorhodin KR (actKR). The P94L mutation is sufficient to change the stereospecificity of actKR. Binary and ternary crystal structures of both wild-type and P94L actKR were determined. Together with assay results, docking simulations, and cocrystal structures, a model for stereochemical control is presented herein that elucidates how type II polyketides are introduced into the substrate pocket such that the C9-carbonyl can be reduced with high regio- and stereospecificities. The molecular features of actKR important for regio- and stereospecificities can potentially be applied in biosynthesizing new polyketides via protein engineering that rationally controls polyketide keto reduction.  相似文献   

12.
Apo-2L is a new member of the tumour necrosis factor (TNF) family shown to induce apoptosis in a number of tumour cell lines. Apo-2L mRNA is expressed by numerous human tissues. Here we report that Apo-2L is expressed and utilized by human Natural Killer (NK) cells. NK cells were shown to express surface Apo-2L in response to interleukin 2 (IL-2) activation, and this response was restricted to the CD3(-)population of the NK cells. Apo-2L mRNA and intracellular Apo-2L were present in both CD3(-)and CD3(+)NK cells; however, increased expression in response to IL-2 was only observed in CD3(-)CD56(+)cells. Also, IL-2-activated NK cells were shown to utilize membrane-bound Apo-2L in mediating lysis of Jurkat cells. Furthermore, Apo-2L-induced apoptosis of Jurkat cells was more rapid than FasL-induced apoptosis, indicating an important and distinct role for Apo-2L in apoptotic cell destruction. In conclusion, we report that NK cells express Apo-2L and that IL-2 activated CD3(-)NK cells utilize the Apo-2L pathway in mediating target cell lysis.  相似文献   

13.
Kinetin riboside (KR) is a N6‐substituted derivative of adenosine. It is a natural compound which occurs in the milk of coconuts on the nanomole level. KR was initially shown to selectively inhibit proliferation of cancer cells and induce their apoptosis. We observed that KR inhibited growth (20–80%) of not only human cancer, but also normal cells and that this effect strongly depended on the type of cells. The anti‐apoptotic Bcl‐2 protein was downregulated, while proapoptotic Bax was upregulated in normal as well as in cancer cell lines, upon exposure to KR. Cytochrome c level increased in the cytosol upon treatment of cells with KR. The activity of caspases (ApoFluor®Green Caspase Activity Assay), as well as caspase‐3 (caspase‐3 activation assay) were increased mainly in cancer cells. The expression of procaspase 9 and its active form in the nucleus as well as in cytosol of KR‐treated cells was elevated. In contrast, no effect of KR on caspase 8 expression was noted. The results indicated that non‐malignant cells were less sensitive to KR then their cancer analogs and that KR most likely stimulated apoptosis mechanism of cancer cells through the intrinsic pathway. J. Cell. Biochem. 112: 2115–2124, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
Although the primary roles of the kallikreinkinin system and the renin-angiotensin system are quite divergent, they are often intertwined under pathophysiological conditions. We examined the effect of ANG II on regulation of B(2) kinin receptors (B2KR) in vascular cells. Vascular smooth muscle cells (VSMC) were treated with ANG II in a concentration (10(-9)-10(-6) M)- and time (0-24 h)-dependent manner, and B2KR protein and mRNA levels were measured by Western blots and PCR, respectively. A threefold increase in B2KR protein levels was observed as early as 6 h, with a peak response at 10(-7) M. ANG II (10(-7) M) also increased B2KR mRNA levels twofold 4 h after stimulation. Actinomycin D suppressed the increase in B2KR mRNA and protein levels induced by ANG II. To elucidate the receptor subtype involved in mediating this regulation, VSMC were pretreated with losartan (AT(1) receptor antagonist) and/or PD-123319 (AT(2) receptor antagonist) at 10 microM for 30 min, followed by ANG II (10(-7) M) stimulation. Losartan completely blocked the ANG II-induced B2KR increase, whereas PD-123319 had no effect. In addition, expression of B2KR mRNA levels was decreased in AT(1A) receptor knockout mice. Finally, to determine whether ANG II stimulates B2KR expression via activation of the MAPK pathway, VSMC were pretreated with an inhibitor of p42/p44(mapk) (PD-98059) and/or an inhibitor of p38(mapk) (SB-202190), followed by ANG II (10(-7) M) for 24 h. Selective inhibition of the p42/p44(mapk) pathway significantly blocked the ANG II-induced increase in B2KR expression. These findings demonstrate that ANG II regulates expression of B2KR in VSMC and provide a rationale for studying the interaction between ANG II and bradykinin in the pathogenesis of vascular dysfunction.  相似文献   

15.
The role of neurokinin 1 (NK(1)) receptor and possible interaction between NK(1) and N-methyl-D-aspartic acid (NMDA) glutamatergic receptors were investigated on spinal c-fos expression after lower urinary tract irritation with acetic acid infusion in rats. At both levels of the first (L(1)) and sixth lumbar (L(6)) spinal cord, where most of hypogastric nerve and pelvic nerve afferent terminals project, respectively, the selective NK(1) receptor antagonist CP-99,994 dose dependently reduced the total number of c-fos protein (Fos)-positive cells. However, CP-100,263, the enantiomer of CP-99,994 with a very low affinity for NK(1) receptor, did not have any effect on the total number of Fos-positive cells. Coadministration of a low dose (1 mg/kg) of CP-99,994 and NMDA receptor antagonist (MK-801), either of which alone did not affect c-fos expression, significantly inhibited c-fos expression at both levels of the spinal cord. Regarding regional differences, the number of Fos-positive cells decreased significantly at all regions of the L(6) level, but only at the dorsal horn of the L(1) level. These results indicate that NK(1) receptor is involved in spinal c-fos expression after lower urinary tract irritation and that NK(1) and NMDA receptors have a synergistic interaction in the spinal processing of nociceptive input from the lower urinary tract.  相似文献   

16.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

17.
Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.  相似文献   

18.
Natural killer cells mediate spontaneously secretory/necrotic killing against rare leukemia cell lines and a nonsecretory/apoptotic killing against a large variety of tumor cell lines. The molecules involved in nonsecretory/apoptotic killing are largely undefined. In the present study, freshly isolated, nonactivated, human NK cells were shown to express TNF, lymphotoxin (LT)-alpha, LT-beta, Fas ligand (L), CD27L, CD30L, OX40L, 4-1BBL, and TNF-related apoptosis-inducing ligand (TRAIL), but not CD40L or nerve growth factor. Complementary receptors were demonstrated to be expressed on the cell surface of solid tumor cell lines susceptible to apoptotic killing mediated by NK cells. Individually applied, antagonists of TNF, LT-alpha1beta2, or FasL fully inhibited NK cell-mediated apoptotic killing of tumor cells. On the other hand, recombinant TNF, LT-alpha1beta2, or FasL applied individually or as pairs were not cytotoxic. In contrast, a mixture of the three ligands mediated significant apoptosis in tumor cells. These findings demonstrate that human NK cells constitutively express several of the TNF family ligands and induce apoptosis in tumor cells by simultaneous engagement of at least three of these cytotoxic molecules.  相似文献   

19.
Unique CD16(-) natural killer (NK) cells appear in the human cycling endometrium and acutely increase in number after ovulation. Selective recruitment from peripheral blood (PB) CD16(-) NK cells is a potential mechanism for the postovulatory increase of these NK cells. The interaction between selectin L, an adhesion molecule playing a critical role in leukocyte extravasation, and its ligands may be involved in this phenomenon. We investigated the menstrual cycle-dependent fluctuation of selectin L expression on PB CD16(-) NK cells and selectin L ligand expression in the human endometrial endothelium. The expression of selectin L on PB CD16(-) NK cells was constantly high throughout the menstrual cycle compared with other PB CD16(+) NK cells and non-NK lymphocytes. Among eight selectin L ligands examined, podocalyxin-like, mucosal addressin cell adhesion molecule-1 (MADCAM1) and chondroitin sulfate proteoglycan 2 (CSPG2) were localized in the endometrial endothelium. Semiquantitative score of immunostaining intensity in the endometrial endothelium for MADCAM1 was highest in the late secretory phase, whereas that for CSPG2 peaked throughout the secretory phase. There was a strong positive correlation between the number of endometrial NK cells and the semiquantitative score for CSPG2. Three active isoforms of CSPG2 mRNA were detected in the human endometrium. These findings support the idea that the interaction between selectin L and selectin L ligands functions in the postovulatory selective recruitment of PB CD16(-) NK cells into the human endometrium.  相似文献   

20.
KR‐12 (residues 18–29 of LL‐37) was known to be the smallest peptide of human cathelicidin LL‐37 possessing antimicrobial activity. In order to optimize α‐helical short antimicrobial peptides having both antimicrobial and antiendotoxic activities without mammalian cell toxicity, we designed and synthesized a series of KR‐12 analogs. Highest hydrophobic analogs KR‐12‐a5 and KR‐12‐a6 displayed greater inhibition of lipopolysaccharide (LPS)‐stimulated tumor necrosis factor‐α production and higher LPS‐binding activity. We have observed that antimicrobial activity is independent of charge, but LPS neutralization requires a balance of hydrophobicity and net positive charge. Among KR‐12 analogs, KR‐12‐a2, KR‐12‐a3 and KR‐12‐a4 showed much higher cell specificity for bacteria over erythrocytes and retained antiendotoxic activity, relative to parental LL‐37. KR‐12‐a5 displayed the strongest antiendotoxic activity but almost similar cell specificity as compared with LL‐37. Also, these KR‐12 analogs (KR‐12‐a2, KR‐12‐a3, KR‐12‐a4 and KR‐12‐a5) exhibited potent antimicrobial activity (minimal inhibitory concentration: 4 μM) against methicillin‐resistant Staphylococcus aureus. Taken together, these KR‐12 analogs have the potential for future development as a novel class of antimicrobial and anti‐inflammatory therapeutic agents. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号