首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.  相似文献   

2.
Cd2+ caused an increase in CO2 formation from glucose in rat adipocytes. The apparent Km value for glucose was 2.02 mM for control condition, with Cd2+, and with insulin. Cd2+ stimulates glucose metabolism even though specific diffusion of glucose is blocked. A possible site effected by Cd2+ is discussed.  相似文献   

3.
4.
The ubiquitously expressed Calpains 1 and 2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large subunit and a small regulatory subunit encoded by the gene Capns1. To investigate a role for the calpain small subunit in cells of the osteoblast lineage in vivo, we previously generated osteoblast-specific Capns1 knockout mice and characterized their bone phenotype. In this study, we further examined effects of low calcium and high fat diets on their bone, fat, and glucose homeostasis.Osteoblast-specific Capns1 knockout mice showed significantly reduced serum levels of total and uncarboxylated osteocalcin, and this was presumably due to their impaired bone formation and bone resorption. The reduced bone resorptive function of the mutant mice was also significant under a low calcium diet. Thus, these results suggest that reduced uncarboxylated osteocalcin levels of mutant mice were, at least in part, due to their osteoporotic bone with impaired bone resorptive function. Interestingly, unlike osteocalcin knockout mice, mutant mice on a normal chow diet were leaner than control littermates; this was likely due to their reduced food intake and overall lower energy homeostasis. To test this hypothesis, we next provided mutant mice with a high fat diet and further examined an effect of their reduced uncarboxylated osteocalcin levels on body composition and glucose metabolism. The average mean body weight of mutant mice became indistinguishable with that of controls after 2 weeks on a high fat diet, and continued to show an upward trend, at least, up to 6 weeks. Moreover, mutant mice on a high fat diet exhibited a significant increase in serum levels of leptin and resistin, adipocyte-specific adipokines, and developed impaired glucose tolerance. Collectively, mice with osteoporosis and reduced bone resorptive function showed reduced serum uncarboxylated osteocalcin levels and were susceptible to increase body adiposity and develop impaired glucose tolerance under a high fat diet.  相似文献   

5.
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.  相似文献   

6.
Cadmium (Cd) has been known to cause hyperglycemia with diabetes-related complications in experimental animals; however, the molecular basis underlying this Cd-induced hyperglycemia is not known. Here, we report the novel finding that the impaired glucose tolerance (IGT) in rats induced by CdCl(2) is accompanied by a drastic (by as much as 90%) and dose-dependent reduction in GLUT4 protein and GLUT4 mRNA levels in adipocytes. The effect was specific to GLUT4; neither GLUT1 nor insulin-responsive aminopeptidase in adipocytes was affected. GLUT2 in hepatocytes was also not affected. Interestingly, the effect on GLUT4 was also specific to adipocytes; the muscle tissues of the Cd-treated rats showed only a slight (<25%) reduction in GLUT4 protein level with no change in GLUT4 message level, and again with no change in GLUT1 protein and its message levels. Although the insulin-induced GLUT4 translocation in adipocytes was not affected by the Cd treatment, the 3-O-methy-D-glucose flux in insulin-stimulated adipocytes of Cd-treated rat was drastically reduced. Together these findings clearly demonstrate that Cd induces IGT in rats by selectively down-regulating GLUT4 expression in adipocytes.  相似文献   

7.
8.
This study examined the effects of fargesin, a neolignan isolated from Magnolia plants, on obesity and insulin resistance and the possible mechanisms involved in these effects in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice. Fargesin promoted the glucose uptake in 3T3-L1 adipocytes. In HFD-induced obese mice, fargesin decreased the body weight gain, white adipose tissue (WAT), and plasma triglyceride, non-esterified fatty acid and glucose levels, and improved the glucose tolerance. Fargesin increased glucose transporter 4 (GLUT4) protein expression and phosphorylation of Akt, AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) in both 3T3-L1 adipocytes and WAT of HFD-induced obese mice. Fargesin also decreased the mRNA expression levels of fatty acid oxidation-related genes, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase-1 (CPT-1), uncoupling protein-2 (UCP-2) and leptin in WAT. Taken together, the present findings suggest that fargesin improves dyslipidemia and hyperglycemia by activating Akt and AMPK in WAT. ? 2012 International Union of Biochemistry and Molecular Biology, Inc.  相似文献   

9.
Inducible nitric oxide synthase modulates lipolysis in adipocytes   总被引:5,自引:0,他引:5  
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.  相似文献   

10.
The effects of oral hypoglycaemic drugs, SPC-703 (n-/p-toluenesulphonyl/-5-methyl-2-pirazoline-1-carbonami de) and tolbutamide on insulin binding and glucose metabolism by isolated adipocytes were studied. After 10 days of administration of both sulphonylurea derivatives, no differences were observed in insulin concentration between both experimental and the control groups of animals, despite a significant fall in blood glucose level. SPC-703 and tolbutamide in concentrations of 1 mM added in vitro to the suspension of adipocytes had no effect on insulin binding or on basal and insulin simulated glucose metabolism. Daily administration of 300 mg/kg body weight of SPC-703 or tolbutamide for 10 days resulted in 48% and 34% increase of specific binding of insulin by adipocytes, respectively. From the Scatchard plot analysis we noted that the increase of binding resulted from increased affinity of insulin receptors for hormone. Simultaneous increase in basal and insulin stimulated glucose metabolism by adipocytes, as measured by 14CO2 production and 14C incorporation into cellular lipids, was observed. The results indicate that hypoglycaemic action of sulphonylureas may be explained by increased affinity of insulin receptors and the stimulating action of these compounds on peripheral glucose metabolism.  相似文献   

11.
During lactation glucose metabolism in paraovarian adipocytes is characterized by a 40 and 80% decrease of glucose incorporation into CO2 and fatty acids in the presence of insulin. In contrast with the stimulation by insulin of glucose incorporation into lactate, glycerol remains unchanged. As a result, insulin sensitivity of total glucose metabolism (oxidation and lipid synthesis) is not altered in adipocytes from lactating rats.  相似文献   

12.
In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bg J/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bg J/bg J beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycospingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes. (Mol Cell Biochem 118: 61–66, 1992)  相似文献   

13.
Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E(2)) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E(2) in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E(2) are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) Control: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E(2), and 4) E2-ICV: OVX-HF mice treated with E(2) intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E(2) treatments, peripherally administered E(2) decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E(2) increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E(2) regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.  相似文献   

14.
A close relationship between acylated-ghrelin and sucrose intake has been reported. However, little has been examined about the physiological action of ghrelin on preference for different types of carbohydrate such as glucose, fructose, and starch. The current study was aimed to investigate the role of acylated-ghrelin in the determinants of the choice of carbohydrates, and pathogenesis of chronic disorders, including obesity and insulin resistance. In a two-bottle-drinking test, ghrelin O-acyltransferase (GOAT) knockout (KO) mice consumed a less amount of glucose and maltodextrin, and almost the same amount of fructose and saccharin solution compared to WT littermates. The increased consumption of glucose and maltodextrin was observed when acylated-ghrelin, but not unacylated-ghrelin, was exogeneously administered in normal C57BL/6J mice, suggesting an association of acylated-ghrelin with glucose-containing carbohydrate intake. When fed a diet rich in maltodextrin, starch and fat for 12 weeks, GOAT KO mice showed less food intake and weight gain, as well as improved glucose tolerance and insulin sensitivity than WT mice. Our data suggests that blockade of GOAT activity may offer a therapeutic option for treatment of obesity and its associated metabolic syndrome by preventing from overconsumption of carbohydrate-rich food.  相似文献   

15.
Diets enriched in sucrose severely impair metabolic regulation and are associated with obesity, insulin resistance and glucose intolerance. In the current study, we investigated the effect of 4 weeks high-sucrose diet (HSD) feeding in C57BL6/J mice, with specific focus on adipocyte function. Mice fed HSD had slightly increased adipose tissue mass but displayed similar hepatic triglycerides, glucose and insulin levels, and glucose clearance capacity as chow-fed mice. Interestingly, we found adipose depot-specific differences, where both the non- and insulin-stimulated glucose transports were markedly impaired in primary adipocytes isolated from the inguinal fat depot from HSD-fed mice. This was accompanied by decreased protein levels of both GLUT4 and AS160. A similar but much less pronounced trend was observed in the retroperitoneal depot. In contrast, both GLUT4 expression and insulin-stimulated glucose uptake were preserved in adipocytes isolated from epididymal adipose tissue with HSD. Further, we found a slight shift in cell size distribution towards larger cells with HSD and a significant decrease of ACC and PGC-1α expression in the inguinal adipose tissue depot. Moreover, fructose alone was sufficient to decrease GLUT4 expression in cultured, mature adipocytes.Altogether, we demonstrate that short-term HSD feeding has deleterious impact on insulin response and glucose transport in the inguinal adipose tissue depot, specifically. These changes occur before the onset of systemic glucose dysmetabolism and therefore could provide a mechanistic link to overall impaired energy metabolism reported after prolonged HSD feeding, alone or in combination with HFD.  相似文献   

16.
Gallbladder cancer (GBC) is the leading malignancy of biliary system showing refractory chemoresistance to current first‐line drugs. Growing epidemiological evidences have established that the incidence of GBC exhibits significant gender predominance with females two‐threefold higher than males, suggesting oestrogen/oestrogen receptors (ERs) signalling might be a critical driver of tumorigenesis in gallbladder. This study aims to evaluate the antitumour activity of tamoxifen (TAM), a major agent of hormonal therapy for breast cancer, in preclinical GBC model. Quantitative real‐time PCR was used to investigate mRNA levels. Protein expression was measured by immunohistochemistry and Western blot. Glycolytic levels were measured by glucose consumption and lactic acid measurement. The antitumour activity of TAM alone or with cisplatin was examined with CCK8 assay, colony formation, flow cytometry and in vivo models. The results revealed that ERɑ expression was higher in GBC tissues and predicted poor clinical outcomes. TAM was showed effective against a variety of GBC cell lines. Mechanical investigations revealed that TAM enabled potent reactive oxygen species (ROS) production by reduced nuclear factor Nrf2 expression and its target genes, leading to the activation of AMPK, which subsequently induced impaired glycolysis and survival advantages. Notably, TAM was demonstrated to sensitize GBC cells to cisplatin (CDDP) both in vitro and in vivo. In agreement with these findings, elimination of oestrogens by ovariectomy in nude mice prevented CDDP resistance. In summary, these results provide basis for TAM treatment for GBC and shed novel light on the potential application of endocrine therapy for patients with GBC.  相似文献   

17.
18.
Thermogenesis (non-exercise activity) in brown adipose tissue (BAT) promotes energy expenditure because of its higher number of mitochondria than white adipose tissue (WAT). The main function of thermogenesis in BAT can counteract obesity through the dissipation of calories as heat. N-butylidenephthalide (BP) is a natural derivative from Angelica sinensis, a Chinese herb that has been used for thousands of years. In this report, we demonstrated that BP improved the metabolic profiles of mice with high fat diet-induced obesity (DIO) by preventing weight gain, improving serum blood parameters, enhancing energy expenditure, stimulating white fat browning, and reversing hepatic steatosis. Further investigations demonstrated that BP administration upregulated the mRNA expression of beige (CD137, TMEM26) and brown fat selected genes (UCP1, PRDM16, PGC-1α, PPARγ) in white adipose tissues. In vitro studies, BP treatment increased multilocular lipid droplet levels, induced β-adrenergic receptor (cAMP/PKA) and AMP-activated protein kinase (AMPK) signaling (AMPK/acetyl-CoA carboxylase/SIRT1), and increased oxygen consumption in murine differentiated beige adipocytes, and the effects of BP were blocked by an AMPK inhibitor. BP promoted the interaction of AMPK with PGC-1α in beige adipocytes. Our findings provide novel insights into the application of BP in regulating energy metabolism and suggest its utility for clinical use in the treatment of obesity and related diseases.  相似文献   

19.
Many human tumours exhibit activation of the PI3K (phosphoinositide 3-kinase)/Akt pathway, and inhibition of this pathway slows tumour growth. This led to the development of specific Akt inhibitors for in vivo use. However, activation of Akt is also necessary for processes including glucose metabolism. Therefore a potential complication of such anticancer drugs is insulin resistance and/or diabetes. In the process of characterizing the metabolic effects of early-phase Akt inhibitors, we discovered an off-target inhibitory effect on mammalian facilitative glucose transporters. In view of the crucial role of glucose transport for all mammalian cells, such an off-target effect would have major implications for further development of this family of compounds. In the present study, we have characterized a next-generation Akt inhibitor, MK-2206. MK-2206 is an orally active allosteric Akt inhibitor under development for treating solid tumours. We report that MK-2206 potently inhibits Thr308Akt and Ser473Akt phosphorylation in 3T3-L1 adipocytes (IC50 0.11 and 0.18 μM respectively) as well as downstream effects of insulin on GLUT4 (glucose transporter 4) translocation (IC50 0.47 μM) and glucose transport (IC50 0.14 μM). Notably, the potency of MK-2206 is approximately 1 log higher than previous inhibitors and its specificity is significantly improved with modest inhibitory effects on glucose transport in GLUT4-expressing adipocytes and GLUT1-rich human erythrocytes, independently of Akt. Nevertheless, MK-2206 clearly has potent effects on Akt2, the principal isoform involved in peripheral insulin action, in which case insulin resistance will probably be a major complication following in vivo administration. We conclude that MK-2206 provides an optimal tool for studying the effects of Akt in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号