首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Border cells in the Drosophila ovary originate within an epithelium, detach from it, invade neighboring nurse cells, and migrate as a coherent cluster. This migration has served as a useful genetic model for understanding epithelial cell motility. The prevailing model of growth factor-mediated chemotaxis in general, and of border cells in particular, posits that receptor activation promotes cellular protrusion at the leading edge. Here we report the time-lapse video imaging of border cell migration, allowing us to test this model. Reducing the activities of the guidance receptors EGFR and PVR did not result in the expected inhibition of protrusion, but instead resulted in protrusion in all directions. In contrast, reduction in Notch activity resulted in failure of the cells to detach from the epithelium without affecting direction sensing. These observations provide new insight into the cellular dynamics and molecular mechanisms of cell migration in vivo.  相似文献   

2.
RNA interference (RNAi) is a powerful tool to study gene function in cultured cells. Transfected cell microarrays in principle allow high-throughput phenotypic analysis after gene knockdown by microscopy. But bottlenecks in imaging and data analysis have limited such high-content screens to endpoint assays in fixed cells and determination of global parameters such as viability. Here we have overcome these limitations and developed an automated platform for high-content RNAi screening by time-lapse fluorescence microscopy of live HeLa cells expressing histone-GFP to report on chromosome segregation and structure. We automated all steps, including printing transfection-ready small interfering RNA (siRNA) microarrays, fluorescence imaging and computational phenotyping of digital images, in a high-throughput workflow. We validated this method in a pilot screen assaying cell division and delivered a sensitive, time-resolved phenoprint for each of the 49 endogenous genes we suppressed. This modular platform is scalable and makes the power of time-lapse microscopy available for genome-wide RNAi screens.  相似文献   

3.
E L Orkina 《Tsitologiia》1979,21(10):1181-1189
A mathematical model of a heterogenous tumor as a system of interrelating cell populations is described, including a pool of quiescent cells, cell-to-cell variability in maturation rates, and cell migration from growth area to necrotic one. Computer simulation results are given, model labeled mitoses and labeled index curves for the Lewis carcinoma are compared with experimental data.  相似文献   

4.
5.
Primary cultures of cells from breast carcinomas were attempted in 74 cases. Growth was observed in 46 cases. Using immunochemical demonstration of keratin proteins (KER), epithelial membrane antigen (EMA) and carcinoembryonic antigen (CEA), three morphologically distinct cell populations were characterized and described. Two cell types (E- and E'-cells) were identified as epithelial by their positive staining for KER and EMA. The third type (F cells) displayed a negative staining for these two epithelial markers; they were considered as stromal cells (fibroblasts). More than 50% of the cultures consisted of pure epithelial cells. Positive CEA staining was observed only in KER- and EMA-positive cells. Out of the 30 cultures, 15 displayed positive staining for CEA. In 7 of these, 30-50% of cells displayed positive, diffuse staining for CEA. The other 8 cultures consisted of more than 50% CEA-positive cells. Strong and homogeneous positivity was restricted to the E-cells, while in the same cultures, E'-cells displayed heterogeneous and diffuse staining. Efficiency and value of this cell culture system are discussed, in comparison with other human breast tumor cell (HBTC) culture techniques. Identification of growing cells and cellular composition of primary cultures are emphasized.  相似文献   

6.
Flow cytometry was used to measure cell cycle parameters in Solanum aviculare plant cell suspensions. Methods for bromodeoxyuridine (BrdU) labeling of plant nuclei were developed so that cell cycle times and the proportion of cells participating in growth could be determined as a function of culture time and conditions. The percentage of cells active in the cell cycle at 25 degrees C decreased from 52% to 19% within 7.6 d of culture; presence of a relatively large proportion of non-active cells was reflected in the results for culture growth. While the maximum specific growth rate of the suspensions at 25 degrees C was 0.34 d-1 (doubling time: 2.0 d), the specific growth rate of active cells was significantly greater at 0.67 d-1, corresponding to a cell cycle time of 1.0 d. A simple model of culture growth based on exponential and linear growth kinetics and the assumption of constant cell cycle time was found to predict with reasonable accuracy the proportion of active cells in the population as a function of time. Reducing the temperature to 17 degrees C lowered the culture growth rate but prolonged the exponential growth phase compared with 25 degrees C; the percentage of cells participating in the cell cycle was also higher. Exposure of plant cells to different agitation intensities in shake flasks had a pronounced effect on the distribution of cells within the cell cycle. The proportion of cells in S phase was 1.8 times higher at a shaker speed of 160 rpm than at 100 rpm, while the frequency of G0 + G1 cells decreased by up to 27%. Because of the significant levels of intraculture heterogeneity in suspended plant cell systems, flow cytometry is of particular value in characterizing culture properties and behavior.  相似文献   

7.
In bivalve molluscs, defence against pathogens mainly relies on fast tissue infiltration by immunocompetent hemocytes that migrate from circulating hemolymph to sites of infection, in order to deliver, in situ, an effective immune response. In the present work, we have investigated dynamics of hemocyte subpopulations motility by combining flow cytometry coupled to Coulter-type cell volume determination, Hoffman modulation contrast microscopy, time-lapse imaging and off-line analysis of cell shape changes. Our results revealed fast modifications of hemocyte aspect in vitro, with bidirectional transitions from spread outlines to condensed cell body morphologies, in the minute range. Amoeboid or non-amoeboid types of locomotion were observed, depending on the cell shapes and on the cell subtypes, with velocities reaching up to 30 μm min?1. Correlations between motion profiles, Hemacolor staining and flow cytometry analysis on living cells help to propose a functional mussel hemocyte classification including the motile properties of these cells. In particular, basophils were shown to be involved in dynamic hemocyte–hemocyte interactions and in the constitution of aggregation cores. Physiological implications, in terms of immune response in organisms devoid of endothelium-closed vascular system, and potential applications of hemocyte motility studies for the development and the interpretation of experiments involving hemocytes in the field of marine ecotoxicology are discussed.  相似文献   

8.
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles.In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.  相似文献   

9.
10.
A Monte Carlo algorithm, which can accurately simulate the dynamics of entire heterogeneous cell populations, was developed. The algorithm takes into account the random nature of cell division as well as unequal partitioning of cellular material at cell division. Moreover, it is general in the sense that it can accommodate a variety of single-cell, deterministic reaction kinetics as well as various stochastic division and partitioning mechanisms. The validity of the algorithm was assessed through comparison of its results with those of the corresponding deterministic cell population balance model in cases where stochastic behavior is expected to be quantitatively negligible. Both algorithms were applied to study: (a) linear intracellular kinetics and (b) the expression dynamics of a genetic network with positive feedback architecture, such as the lac operon. The effects of stochastic division as well as those of different division and partitioning mechanisms were assessed in these systems, while the comparison of the stochastic model with a continuum model elucidated the significance of cell population heterogeneity even in cases where only the prediction of average properties is of primary interest.  相似文献   

11.
Time-lapse cinematography was used to study and compare the proliferation and migration activity of pulmonary endothelial cells and fibroblasts, two cell types with very different structural and functional properties. Endothelial cells were found to have a mere rapid growth rate than fibroblasts. Contributing to the shorter population doubling time of the endothelial cells were lower interdivision times and a tendency for these cells to remain in division cycle with successive generations of growth. Striking differences between endothelial cells and fibroblasts were seen in migration behaviour. Endothelial cells had lower migration rates and tended to remain within a restricted growth area, whereas fibroblasts migrated freely throughout the growth area.  相似文献   

12.
13.
Epithelial cells of the mammary gland possess the inherent capacity to form epithelial monolayers in vitro. This requires coordination of cell migration, cell-cell contact formation, and cell proliferation. Using time-lapse phase contrast videomicroscopy we have observed mammary gland epithelial cells over different time scales. We show the generation of a complete polarized epithelial monolayer in real-time, starting from a few cells. We subsequently concentrated on the early stages of this process by tracking epithelial cells during phases of polarized migration. We performed migration analysis using fractal measures. With this technology the structure of seemingly random processes not accessible to the usual methods of linear analysis can be measured. As a control and proof of principle approach we applied infection of cells with an adenoviral vector, which is used as a gene targeting vector for many applications. Infection markedly influenced the patterns of migratory behavior. We, therefore, believe that time-lapse videomicroscopy in combination with fractal analysis can contribute to differential characterization of distinct cellular migration patterns. This will be useful in situations of long-term alterations in cell culture systems.  相似文献   

14.
Das T  Payer B  Cayouette M  Harris WA 《Neuron》2003,37(4):597-609
Two-photon excitation microscopy was used to reconstruct cell divisions in living zebrafish embryonic retinas. Contrary to proposed models for vertebrate asymmetric divisions, no apico-basal cell divisions take place in the zebrafish retina during the generation of postmitotic neurons. However, a surprising shift in the orientation of cell division from central-peripheral to circumferential occurs within the plane of the ventricular surface. In the sonic you (syu) and lakritz (lak) mutants, the shift from central-peripheral to circumferential divisions is absent or delayed, correlating with the delay in neuronal differentiation and neurogenesis in these mutants. The reconstructions here show that mitotic cells always remain in contact with the opposite basal surface by means of a thin basal process that can be inherited asymmetrically.  相似文献   

15.
Direct evidence was obtained for the existence of two distinct forms of active alpha-chymotrypsin immobilized on CNBr-activated Sepharose 4B. Electron paramagnetic resonance (EPR) spectra of five different spin-labeled immobilized enzyme formulations in the presence of indole were all resolved into the same two spectral components. Both subpopulation spectra were approximately identified experimentally, and the subpopulation exhibiting greatly restricted spin-label motion was shown also to be relatively inaccessible to solvent. Using overall specific activity data and subpopulation fractions from EPR spectral analysis, the specific activity of the more constricted immobilized enzyme active form was shown to be approximately 15 times smaller than that of the other class of immobilized enzyme molecules with an indole EPR spectrum similar to that of chymotrypsin in solution. Variations in overall specific activity of formulations with different loadings and different supports results entirely from changes in the proportions of the same two subpopulations of immobilized enzyme molecules.  相似文献   

16.
Summary In this study we assessed the behavior of fibroblasts during contraction of collagen lattices. We applied a new technique for three-dimensional time-lapse studies of movements of living cells using phase-contrast laser scanning microscopy. Five anchored and five floating collagen lattices were studied regarding the activity of cells during a 7-h period of active contraction. Three-dimensional reconstructions of the fibroblasts and their extensions were made from datasets of 16–26 “optical sections” 5 μm apart recorded hourly during the period of measurements. The distance between fibroblast nuclei in the floating lattices decreased by a mean of 6.8 μm, but remained constant in the anchored group. Only minor variations were found in the angle between a line connecting any two nuclei and the tangent of the lattice margin. The lengths of the cellular extensions continuously changed by shortening and extending, and an increasing number of intercellular contacts were established with time. The angle between the extensions and the periphery of the lattice varied continually, and no distinct pattern of arrangement of the extensions was seen. In conclusion, we have shown in living cells in vitro that fibroblasts do not appear to move around within lattices during contraction but rather send out and withdraw cellular extensions continuously. This speaks against cellular locomotion or movement as a main feature of contraction. Time-lapse scanning laser microscopy has also been shown to be a suitable method to study cellular behavior quantitatively in three dimensions during lattice contraction.  相似文献   

17.
Here we describe a new method applying phage-displayed antibody libraries to the selection of antibodies against a single identified cell on a glass slide. This is the only described method that has successfully achieved selection of antibodies against a single rare cell in a heterogeneous population of cells. The phage library is incubated with the slide containing the identified rare cell of interest; incubation is followed by UV irradiation while protecting the target cell with a minute disc. The UV light inactivates all phages outside the shielded area by cross-linking the DNA constituting their genomes. The expected yield is between one and ten phage particles from a single cell selection. The encoded antibodies are subsequently produced monoclonally and tested for specificity. This method can be applied within a week to carry out ten or more individual cell selections. Including subsequent testing of antibody specificity, a specific antibody can be identified within 2 months.  相似文献   

18.
Tissue engineering and regenerative medicine are rapidly developing fields that use cells or cell-based constructs as therapeutic products for a wide range of clinical applications. Efforts to commercialise these therapies are driving a need for capable, scaleable, manufacturing technologies to ensure therapies are able to meet regulatory requirements and are economically viable at industrial scale production. We report the first automated expansion of a human bone marrow derived mesenchymal stem cell population (hMSCs) using a fully automated cell culture platform. Differences in cell population growth profile, attributed to key methodological differences, were observed between the automated protocol and a benchmark manual protocol. However, qualitatively similar cell output, assessed by cell morphology and the expression of typical hMSC markers, was obtained from both systems. Furthermore, the critical importance of minor process variation, e.g. the effect of cell seeding density on characteristics such as population growth kinetics and cell phenotype, was observed irrespective of protocol type. This work highlights the importance of careful process design in therapeutic cell manufacture and demonstrates the potential of automated culture for future optimisation and scale up studies required for the translation of regenerative medicine products from the laboratory to the clinic.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号