首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic ethanol consumption causes oxidative damage in the liver, and induction of cytochrome P450 2E1 (CYP2E1) is one pathway involved in oxidative stress produced by ethanol. The hepatic accumulation of iron and polyunsaturated fatty acids significantly contributes to ethanol hepatotoxicity in the intragastric infusion model of ethanol treatment. The objective of this study was to analyze the effect of the green tea flavanol epigallocatechin-3-gallate (EGCG), which has been shown to prevent alcohol-induced liver damage, on CYP2E1-mediated toxicity in HepG2 cells overexpressing CYP2E1 (E47 cells). Treatment of E47 cells with arachidonic acid plus iron (AA + Fe) was previously reported to produce synergistic toxicity in E47 cells by a mechanism dependent on CYP2E1 activity and involving oxidative stress and lipid peroxidation. EGCG protected E47 cells against toxicity and loss of viability induced by AA+Fe; EGCG had no effect on CYP2E1 activity. Prevention of this toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species, a decrease in lipid peroxidation, and maintenance of intracellular glutathione in cells challenged by AA+Fe in the presence of EGCG. AA+Fe treatment caused a decline in the mitochondrial membrane potential, which was also blocked by EGCG. In conclusion, EGCG exerts a protective action on CYP2E1-dependent oxidative stress and toxicity that may contribute to preventing alcohol-induced liver injury, and may be useful in preventing toxicity by various hepatotoxins activated by CYP2E1 to reactive intermediates.  相似文献   

2.
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.  相似文献   

3.
Our previous studies have shown that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents neuronal cell death caused by several neurotoxins. The present study sought to determine the neuroprotective effect of EGCG when it is administered after the induction of cell damage ('neurorescue'). In an attempt to imitate a progressive mode of death, PC12 cells were initially subjected to serum-starvation conditions for a period of 1 or 3 days before administration of EGCG (0.1-10 microM) for up to 3 days. In spite of the high percentage of cell death, single or repetitive administration of EGCG (1 microM) significantly attenuated cell death. The neurorescue effect of EGCG was abolished by pre-treatment with the protein kinase C inhibitor GF109203X (2.5 microM), suggesting the involvement of the protein kinase C pathway in neurorescue by the drug. This is consistent with the rapid (15 min) translocation of the protein kinase C alpha isoform to the cell membrane in response to EGCG. The correlative neurite outgrowth activity of EGCG on PC12 cells may also contribute to its neurorescue effect. The present findings suggest that EGCG may have a positive impact on aging and neurodegenerative diseases to retard or perhaps even reverse the accelerated rate of neuronal degeneration.  相似文献   

4.
Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS–PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.  相似文献   

5.
Green tea's active ingredient, epigallocatechin 3-gallate (EGCG), has gained significant attention among scientists and has been one of the leading plant-derived molecules studied for its potential health benefits. In the present review I summarize the findings from some of the most significant preclinical studies with EGCG in arthritic diseases. The review also addresses the limitations of the dose, pharmacokinetics, and bioavailability of EGCG in experimental animals and findings related to the EGCG-drug interaction. Although these findings provide scientific evidence of the anti-rheumatic activity of EGCG, further preclinical studies are warranted before phase clinical trials could be initiated with confidence for patients with joint diseases.  相似文献   

6.
Byun EH  Omura T  Yamada K  Tachibana H 《FEBS letters》2011,585(5):814-820
Here we show the molecular basis for the inhibition of peptidoglycan (PGN)-induced TLR2 signaling by a major green tea polyphenol epigallocatechin-3-gallate (EGCG). Recently, we identified the 67-kDa laminin receptor (67LR) as the cell-surface EGCG receptor. Anti-67LR antibody treatment or silencing of 67LR resulted in abrogation of the inhibitory action of EGCG on PGN-induced production of pro-inflammatory mediators and activation of mitogen-activated protein kinases. Silencing of Toll-interacting protein (Tollip), a negative regulator of TLR signaling impaired the TLR2 signaling inhibitory activity of EGCG, suggesting that TLR2 response could be inhibited by EGCG via 67LR and Tollip.  相似文献   

7.
Metastasis of the cancer cells to the regional lymph nodes parts of the body remains an important cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Epigallocatechin-3-gallate (EGCG), the most important ingredient in the green tea, has been reported to possess antioxidant and anticancer activities. However, the effects of EGCG on NPC cell metastasis are still unclear. In the present study, we examined the in vitro antimetastatic properties of EGCG on human NPC cells, NPC-39, HONE-1 and NPC-BM. The results revealed that EGCG considerably inhibited the migration abilities of three NPC cells. The matrix metalloproteinases-2 (MMP-2) activity and expression were also significantly inhibited by EGCG treatment. Furthermore, EGCG suppressed the phosphorylation of the Src signaling pathway. Moreover, blocking the Src pathway also inhibits MMP-2 expression and migration in the NPC cells. In conclusion, this study revealed that EGCG could inhibit the metastatic activity of human NPC cells by downregulating the protein expression of MMP-2 through modulation of the Src signaling pathway, suggesting that EGCG may be a potential candidate for chemoprevention of NPC.  相似文献   

8.
The aim of the study was to examine the effects of epigallocatechin-3-gallate (EGCG) on hepatic fibrogenesis and on cultured hepatic stellate cells (HSCs). The rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was used to assess the effect of daily intraperitoneal injections of EGCG on the indexes of fibrosis. Histological and hepatic hydroxyproline examination revealed that EGCG significantly arrested progression of hepatic fibrosis. EGCG caused significant amelioration of liver injury (reduced activities of serum alanine aminotransferase and aspartate aminotransferase). The development of CCl4-induced hepatic fibrosis altered the redox state with a decreased hepatic glutathione and increased the formation of lipid peroxidative products, which were partially normalized by treatment with EGCG, respectively. Moreover, EGCG markedly attenuated HSC activation as well as matrix metalloproteinase (MMP)-2 activity. In cultured stellate cell, the expression of MMP-2 mRNA and protein were substantially reduced by EGCG treatment. Concanavalin A-induced activation of secreted MMP-2 was inhibited by EGCG through the influence of membrane type 1-MMP activity. These results demonstrate that administration of EGCG may be useful in the treatment and prevention of hepatic fibrosis.  相似文献   

9.
We have previously shown that green tea polyphenols inhibit the onset and severity of collagen II-induced arthritis in mice. In the present study, we report the pharmacological effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), on interleukin-1 beta (IL-1 beta)-induced expression and activity of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in human chondrocytes derived from osteoarthritis (OA) cartilage. Stimulation of human chondrocytes with IL-1 beta (5 ng/ml) for 24 h resulted in significantly enhanced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) when compared to untreated controls (p <.001). Pretreament of human chondrocytes with EGCG showed a dose-dependent inhibition in the production of NO and PGE(2) by 48% and 24%, respectively, and correlated with the inhibition of iNOS and COX-2 activities (p <.005). In addition, IL-1 beta-induced expression of iNOS and COX-2 was also markedly inhibited in human chondrocytes pretreated with EGCG (p <.001). Parallel to these findings, EGCG also inhibited the IL-1 beta-induced LDH release in chondrocytes cultures. Overall, the study suggests that EGCG affords protection against IL-1 beta-induced production of catabolic mediators NO and PGE(2) in human chondrocytes by regulating the expression and catalytic activity of their respective enzymes. Furthermore, our results also indicate that ECGC may be of potential therapeutic value for inhibiting cartilage resorption in arthritic joints.  相似文献   

10.
Studies from our laboratory have demonstrated that the major green tea polyphenol, (-)-epigallocatechin 3-gallate (EGCG), exerts potent neuroprotective actions in the mice model of Parkinson's disease. These studies were extended to neuronal cell culture employing the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA). Pretreatment with EGCG (0.1-10 microm) attenuated human neuroblastoma (NB) SH-SY5Y cell death, induced by a 24-h exposure to 6-OHDA (50 microm). Potential cell signaling candidates involved in this neuroprotective effect were further examined. EGCG restored the reduced protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) activities caused by 6-OHDA toxicity. However, the neuroprotective effect of EGCG on cell survival was abolished by pretreatment with PKC inhibitor GF 109203X (1 microm). Because EGCG increased phosphorylated PKC, we suggest that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-OHDA. In addition, gene expression analysis revealed that EGCG prevented both the 6-OHDA-induced expression of several mRNAs, such as Bax, Bad, and Mdm2, and the decrease in Bcl-2, Bcl-w, and Bcl-x(L). These results suggest that the neuroprotective mechanism of EGCG against oxidative stress-induced cell death includes stimulation of PKC and modulation of cell survival/cell cycle genes.  相似文献   

11.
Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.  相似文献   

12.
The catechin EGCG is the main flavonoid compound of green tea and has received enormous pharmacological attention because of its putative beneficial health effects. This study investigated for the first time the effect of EGCG on hERG channels, the main pharmacological target of drugs that cause acquired long QT syndrome.Cloned hERG channels were expressed in Xenopus oocytes and in HEK293 cells. Heterologous hERG currents were inhibited by EGCG with an IC50 of 6.0 μmol/l in HEK293 cells and an IC50 of 20.5 μmol/l in Xenopus laevis oocytes. Onset of effect was slow and only little recovery from inhibition was observed upon washout. In X. laevis oocytes EGCG inhibited hERG channels in the open and inactivated states, but not in the closed states. The half-maximal activation voltage of hERG currents was shifted by EGCG towards more positive potentials.In conclusion, EGCG is a low-affinity inhibitor of hERG sharing major electrophysiological features with pharmaceutical hERG antagonists.  相似文献   

13.
DNA topoisomerases I and II are essential for cell survival and play critical roles in DNA metabolism and structure. Inhibitors of topoisomerase constitute a novel family of antitumor agents with demonstrated clinical activity in human malignancies. The clinical use of these agents is limited due to severe toxic effects on normal cells. Therefore, there is a need to develop novel, nontoxic topoisomerase inhibitors that have the ability to spare normal cells. Recent studies have shown that green tea and its major polyphenolic constituent, epigallocatechin-3-gallate (EGCG), impart growth inhibitory responses to cancer cells but not to normal cells. Based on the knowledge that EGCG induces DNA damage, cell cycle arrest, and apoptosis, we considered the possibility of the involvement of topoisomerase in the antiproliferative response of EGCG. Here, for the first time, we show that EGCG inhibits topoisomerase I, but not topoisomerase II in several human colon carcinoma cell lines. Based on this study it is tempting to suggest that combination of EGCG with other conventional topoisomerase inhibitors could be an improved strategy for treatment of colon cancer. The possible role of EGCG as a chemotherapeutic agent needs to be investigated.  相似文献   

14.
Green tea has shown remarkable anti-inflammatory and cancer chemopreventive effects in many animal tumor bioassays, cell culture systems, and epidemiological studies. Many of these biological effects of green tea are mediated by epigallocatechin 3-gallate (EGCG), the major polyphenol present therein. We have earlier shown that EGCG treatment results in apoptosis of several cancer cells, but not of normal cells (J. Natl. Cancer Inst. 89, 1881-1886 (1997)). The mechanism of this differential response of EGCG is not known. In this study, we investigated the involvement of NF-kappaB during these differential responses of EGCG. EGCG treatment resulted in a dose-dependent (i) inhibition of cell growth, (ii) G0/G1-phase arrest of the cell cycle, and (iii) induction of apoptosis in human epidermoid carcinoma (A431) cells, but not in normal human epidermal keratinocytes (NHEK). Electromobility shift assay revealed that EGCG (10-80 microM) treatment results in lowering of NF-kappaB levels in both the cytoplasm and nucleus in a dose-dependent manner in both A431 cells and NHEK, albeit at different concentrations. EGCG treatment was found to result in a dose-based differential inhibition of TNF-alpha- and LPS-mediated activation of NF-kappaB in these cells. The inhibition of NF-kappaB constitutive expression and activation in NHEK was observed only at high concentrations. The immunoblot analysis also demonstrated a similar pattern of inhibition of the constitutive expression as well as activation of NF-kappaB/p65 nuclear protein. This inhibition of TNF-alpha-caused NF-kappaB activation was mediated via the phosphorylative degradation of its inhibitory protein IkappaBalpha. Taken together, EGCG was found to impart differential dose-based NF-kappaB inhibitory response in cancer cells vs normal cells; i.e., EGCG-mediated inhibition of NF-kappaB constitutive expression and activation was found to occur at much higher dose of EGCG in NHEK as compared to A431 cells. This study suggests that EGCG-caused cell cycle deregulation and apoptosis of cancer cells may be mediated through NF-kappaB inhibition.  相似文献   

15.
Prostaglandin (PG)E2 is a critical lipid mediator connecting chronic inflammation to cancer. The anti-carcinogenic epigallocatechin-3-gallate (EGCG) from green tea (Camellia sinensis) suppresses cellular PGE2 biosynthesis, but the underlying molecular mechanisms are unclear. Here, we investigated the interference of EGCG with enzymes involved in PGE2 biosynthesis, namely cytosolic phospholipase (cPL)A2, cyclooxygenase (COX)-1 and -2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). EGCG failed to significantly inhibit isolated COX-2 and cPLA2 up to 30 μM and moderately blocked isolated COX-1 (IC50 > 30 μM). However, EGCG efficiently inhibited the transformation of PGH2 to PGE2 catalyzed by mPGES-1 (IC50 = 1.8 μM). In lipopolysaccharide-stimulated human whole blood, EGCG significantly inhibited PGE2 generation, whereas the concomitant synthesis of other prostanoids (i.e., 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-keto PGF) was not suppressed. Conclusively, mPGES-1 is a molecular target of EGCG, and inhibition of mPGES-1 is seemingly the predominant mechanism underlying suppression of cellular PGE2 biosynthesis by EGCG.  相似文献   

16.
Several independent research studies have shown that consumption of green tea reduces the development of cancer in many animal models. Epidemiological observations, though inconclusive, are suggesting that green tea consumption may also reduce the risk of some cancers in humans. These anti-carcinogenic effects of green tea have been attributed to its constituent polyphenols. Angiogenesis is a crucial step in the growth and metastasis of cancers. We have investigated the effect of the major polyphenolic constituent of green tea, epigallocatechin-3-gallate (EGCG), on the tube formation of human umbilical vein endothelial cells (HUVEC) on matrigel. Tube formation was inhibited by treatment both prior to plating and after plating endothelial cells on matrigel. EGCG treatment also was found to reduce the migration of endothelial cells in matrigel plug model. The role of matrix metalloproteinases (MMP) has been shown to play an important role during angiogenesis. Zymography was performed to determine if EGCG had any effect on MMPs. Zymographs of EGCG-treated culture supernatants modulated the gelatinolytic activities of secreted proteinases indicating that EGCG may be exerting its inhibitory effect by regulating proteinases. These findings suggest that EGCG acts as an angiogenesis inhibitor by modulating protease activity during endothelial morphogenesis.  相似文献   

17.
Epidemiological studies on humans and investigations in animal models suggest that consumption of green tea has anti-cancer effects. Small-cell lung carcinoma (SCLC) has a poor prognosis, particularly due to the development of drug resistance. We investigated the effects of the green tea polyphenol, epigallocatechin-3-gallate (EGCG) on human SCLC cells. EGCG had similar effects (IC(50) of approximately 70 microM) on drug-sensitive (H69) and drug-resistant (H69VP) SCLC cells, indicating that it is not part of the drug resistance phenotype expressed in these cells. In both cell lines, incubation in EGCG at 1 x IC(50) for 24h resulted in 50-60% reduced telomerase activity as measured by a PCR-based assay for telomeric repeats. Colorimetric assays of cells treated for 36 h with EGCG demonstrated a reduction in activities of caspases 3 (50%) and 9 (70%) but not caspase 8, indicating initiation of apoptosis. DNA fragmentation as measured by ELISA occurred within cells treated with EGCG and this was confirmed by TUNEL staining. Flow cytometric analysis of SCLC cells incubated for 36 h in EGCG indicated a cell-cycle block in S phase. These data indicate the potential use of EGCG, and possibly green tea, in treating SCLC.  相似文献   

18.
Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has various beneficial properties including chemopreventive, anticarcinogenic, and antioxidant actions. The interaction with proteins known as EGCG-binding targets may be related to the anticancer effects. However, the binding mechanisms for this activity remain poorly understood. Using mass spectrometry and chemical detection methods, we found that EGCG forms covalent adducts with cysteinyl thiol residues in proteins through autoxidation. To investigate the functional modulation caused by binding of EGCG, we examined the interaction between EGCG and a thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Concentration-dependent covalent binding of EGCG to GAPDH was found to be coupled to the irreversible inhibition of GAPDH activity. Mutation experiments revealed that EGCG is primarily bound to the cysteinyl thiol group of the active center, indicating that the irreversible inhibition of GAPDH is due to the covalent attachment of EGCG to the active-center cysteine. Moreover, using EGCG-treated cancer cells, we identified GAPDH as a target of EGCG covalent binding through specific interactions between catechols and aminophenyl boronate agarose resin. Based on these findings, we propose that the covalent modification of proteins by EGCG may be a novel pathway related to the biological activity of EGCG.  相似文献   

19.
A characteristic of many enteropathies is increased epithelial permeability, a potentially pathophysiological event that can be evoked by T helper (Th)-1 (i.e., IFN-gamma) and Th2 (i.e., IL-4) cytokines and bacterial infection [e.g., enteropathogenic Escherichia coli (EPEC)]. The green tea polyphenol (-)-epigallocatechin gallate (EGCG) has immunosuppressive properties, and we hypothesized that it would ameliorate the increased epithelial permeability induced by IFN-gamma, IL-4, and/or EPEC. EGCG, but not the related epigallocatechin, completely prevented the increase in epithelial (i.e., T84 cell monolayer) permeability caused by IFN-gamma exposure as gauged by transepithelial resistance and horseradish peroxidase flux; EGCG did not alleviate the barrier disruption induced by IL-4 or EPEC. IFN-gamma-treated T84 and THP-1 (monocytic cell line) cells displayed STAT1 activation (tyrosine phosphorylation on Western blot analysis, DNA binding on EMSA) and upregulation of interferon response factor-1 mRNA, a STAT1-dependent gene. All three events were inhibited by EGCG pretreatment. Aurintricarboxylic acid also blocked IFN-gamma-induced STAT1 activation, but it did not prevent the increase in epithelial permeability. Additionally, pharmacological blockade of MAPK signaling did not affect IFN-gamma-induced epithelial barrier dysfunction. Thus, as a potential adjunct anti-inflammatory agent, EGCG can block STAT1-dependent events in gut epithelia and monocytes and prevent IFN-gamma-induced increased epithelial permeability. The latter event is both a STAT1- and MAPK-independent event.  相似文献   

20.
Hepatocyte growth factor (HGF) and c-Met have recently attracted a great deal of attention as prognostic indicators of patient outcome, and they are important in the control of tumor growth and invasion. Epigallocatechin-3-gallate (EGCG) has been shown to modulate multiple signal pathways in a manner that controls the unwanted proliferation and invasion of cells, thereby imparting cancer chemopreventive and therapeutic effects. In this study, we investigated the effects of EGCG in inhibiting HGF-induced tumor growth and invasion of oral cancer in vitro and in vivo. We examined the effects of EGCG on HGF-induced cell proliferation, migration, invasion, induction of apoptosis and modulation of HGF/c-Met signaling pathway in the KB oral cancer cell line. We investigated the antitumor effect and inhibition of c-Met expression by EGCG in a syngeneic mouse model (C3H/HeJ mice, SCC VII/SF cell line). HGF promoted cell proliferation, migration, invasion and induction of MMP (matrix metalloproteinase)-2 and MMP-9 in KB cells. EGCG significantly inhibited HGF-induced phosphorylation of Met and cell growth, invasion and expression of MMP-2 and MMP-9. EGCG blocked HGF-induced phosphorylation of c-Met and that of the downstream kinases AKT and ERK, and inhibition of p-AKT and p-ERK by EGCG was associated with marked increases in the phosphorylation of p38, JNK, cleaved caspase-3 and poly-ADP-ribose polymerase. In C3H/HeJ syngeneic mice, as an in vivo model, tumor growth was suppressed and apoptosis was increased by EGCG. Our results suggest that EGCG may be a potential therapeutic agent to inhibit HGF-induced tumor growth and invasion in oral cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号