首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fermentation of d-glucose and d-xylose mixtures by the yeast Candida tropicalis NBRC 0618 has been studied under the most favourable operation conditions for the culture, determining the most adequate initial proportion in these sugars for xylitol production. In all the experiments a synthetic culture medium was used, with an initial total substrate concentration of 25 g L−1, a constant pH of 5.0 and a temperature of 30 °C. From the experimental results, it was deduced that the highest values of specific rates of production and of overall yield in xylitol were achieved for the mixtures with the highest percentage of d-xylose, specifically in the culture with the initial d-glucose and d-xylose concentrations of 1 and 24 g L−1, respectively, with an overall xylitol yield of 0.28 g g−1. In addition, the specific rates of xylitol production declined over the time course of the culture and the formation of this bioproduct was favoured by the presence of small quantities of d-glucose. The sum of the overall yield values in xylitol and ethanol for all the experiments ranged from 0.26 to 0.56 g bioproduct/g total substrate.  相似文献   

2.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   

3.
Corynebacterium glutamicum strains CRA1 and CRX2 are able to grow on l-arabinose and d-xylose, respectively, as sole carbon sources. Nevertheless, they exhibit the major shortcoming that their sugar consumption appreciably declines at lower concentrations of these substrates. To address this, the C. glutamicum ATCC31831 l-arabinose transporter gene, araE, was independently integrated into both strains. Unlike its parental strain, resultant CRA1-araE was able to aerobically grow at low (3.6 g·l−1) l-arabinose concentrations. Interestingly, strain CRX2-araE grew 2.9-fold faster than parental CRX2 at low (3.6 g·l−1) d-xylose concentrations. The corresponding substrate consumption rates of CRA1-araE and CRX2-araE under oxygen-deprived conditions were 2.8- and 2.7-fold, respectively, higher than those of their respective parental strains. Moreover, CRA1-araE and CRX2-araE utilized their respective substrates simultaneously with d-glucose under both aerobic and oxygen-deprived conditions. Based on these observations, a platform strain, ACX-araE, for C. glutamicum-based mixed sugar utilization was designed. It harbored araBAD for l-arabinose metabolism, xylAB for d-xylose metabolism, d-cellobiose permease-encoding bglF 317A , β-glucosidase-encoding bglA and araE in its chromosomal DNA. In mineral medium containing a sugar mixture of d-glucose, d-xylose, l-arabinose, and d-cellobiose under oxygen-deprived conditions, strain ACX-araE simultaneously and completely consumed all sugars.  相似文献   

4.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

5.
Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar l-arabinose, a product of the degradation of lignocellulosic biomass. The resultant CRA1 recombinant strain expressed the Escherichia coli genes araA, araB, and araD encoding l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, respectively, under the control of a constitutive promoter. Unlike the wild-type strain, CRA1 was able to grow on mineral salts medium containing l-arabinose as the sole carbon and energy source. The three cloned genes were expressed to the same levels whether cells were cultured in the presence of d-glucose or l-arabinose. Under oxygen deprivation and with l-arabinose as the sole carbon and energy source, strain CRA1 carbon flow was redirected to produce up to 40, 37, and 11%, respectively, of the theoretical yields of succinic, lactic, and acetic acids. Using a sugar mixture containing 5% d-glucose and 1% l-arabinose under oxygen deprivation, CRA1 cells metabolized l-arabinose at a constant rate, resulting in combined organic acids yield based on the amount of sugar mixture consumed after d-glucose depletion (83%) that was comparable to that before d-glucose depletion (89%). Strain CRA1 is, therefore, able to utilize l-arabinose as a substrate for organic acid production even in the presence of d-glucose.  相似文献   

6.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

7.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary All fourCandida blankii isolates evaluated for growth in simulated bagasse hemicellulose hydrolysate utilized the sugars and acetic acid completely. The utilization ofd-xylose,l-arabinose and acetic acid were delayed by the presence ofd-glucose, but after glucose depletion the other carbon sources were utilized simultaneously. The maximum specific growth rate of 0.36 h–1 and cell yield of 0.47 g cells/g carbon source assimilate compared with published results obtained withC. utilis. C. blankii appeared superior toC. utilis for biomass production from hemicellulose hydrolysate in that it utilizedl-arabinose and was capable of growth at higher temperatures.  相似文献   

9.
WhenBacillus subtilis strain ATCC 21951, a transketolase-deficientd-ribose-producing mutant, was grown ond-glucose plus a second substrate which is metabolized via the oxidative pentose phosphate cycle (d-gluconic acid,d-xylose,l-arabinose ord-xylitol),d-glucose did not catabolite repress metabolism of the second carbon source. Thed-ribose yield obtained with the simultaneously converted carbon substrates, significantly exceeded that when onlyd-glucose was used. In addition, the concentration of glycolytic by-products and the fermentation time significantly decreased. Based on these findings, a fermentation process was developed withB. subtilis strain ATCC 21951 in whichd-glucose (100 g L–1) andd-gluconic acid (50 g L–1) were converted into 45 g L–1 ofd-ribose and 7.5 g L–1 of acetoin. A second process, based ond-glucose andd-xylose (100 g L–1 each), yielded 60 g L–1 ofd-ribose and 4 g L–1 of acetoin plus 2,3-butanediol. Both mixed carbon source fermentations provide excellent alternatives to the less efficientd-glucose-based processes used so far.  相似文献   

10.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

11.
Summary A polysaccharide producing strain ofBacillus licheniformis was isolated from exudate of raffia palm,Raffia vinifera. The optimum conditions for growth and polysaccharide production have been investigated and established. No appreciable polysaccharide was formed on glucose. It grew best in Czapek-Dox media with sucrose as the carbon source. The polysaccharide has been characterized as a heteropolymer containingd-glucose,d-mannose andd-xylose.  相似文献   

12.
Lactobacillus delbrueckii was grown on sugarcane molasses, sugarcane juice and sugar beet juice in batch fermentation at pH 6 and at 40°C. After 72 h, the lactic acid from 13% (w/v) sugarcane molasses (119 g total sugar l−1) and sugarcane juice (133 g total sugar l−1) was 107 g l−1 and 120 g l−1, respectively. With 10% (w/v) sugar beet juice (105 g total sugar l−1), 84 g lactic acid l−1 was produced. The optical purities of d-lactic acid from the feedstocks ranged from 97.2 to 98.3%.  相似文献   

13.
l-Arabinose utilization by the yeasts Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012 was investigated in aerobic batch cultures and compared, under similar conditions, to d-glucose and d-xylose metabolism. At high aeration levels, only biomass was formed from all the three sugars. When oxygen became limited, ethanol was produced from d-glucose, demonstrating a fermentative pathway in these yeasts. However, pentoses were essentially respired and, under oxygen limitation, the respective polyols accumulated—arabitol from l-arabinose and xylitol from d-xylose. Different l-arabinose concentrations and oxygen conditions were tested to better understand l-arabinose metabolism. P. guilliermondii PYCC 3012 excreted considerably more arabitol from l-arabinose (and also xylitol from d-xylose) than C. arabinofermentans PYCC 5603T. In contrast to the latter, P. guilliermondii PYCC 3012 did not produce any traces of ethanol in complex l-arabinose (80 g/l) medium under oxygen-limited conditions. Neither sustained growth nor active metabolism was observed under anaerobiosis. This study demonstrates, for the first time, the oxygen dependence of metabolite and product formation in l-arabinose-assimilating yeasts.  相似文献   

14.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

16.
A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)−1 h−1. Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)−1 h−1, yielding 87 g l−1 D-mannitol from 93.7 g l−1 D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD+ ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l−1 D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)−1 h−1 was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells. Dedicated to Prof. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

17.
A kinetic study on esterification between d-glucose and l-phenylalanine catalysed by lipases from Rhizomucor miehei (RML) and Candida rugosa (CRL) in organic media investigated in detail showed that both the lipases followed a Ping-Pong Bi-Bi mechanism with two distinct types of competitive inhibitions. Graphical double reciprocal plots and computer simulation studies showed that competitive double substrate inhibition took place at higher concentrations leading to dead-end inhibition in the case of RML and in the case of CRL, inhibition only by d-glucose at higher concentrations leading to dead-end lipase–d-glucose complexes. An attempt to obtain the best fit of these kinetic models through curve-fitting yielded in good approximation, the apparent values of important kinetic parameters, RML: k cat = 2.24 ± 0.23 mM h−1 (mg protein)−1, K m l-phenylalanine = 95.6 ± 9.7 mM, K m d-glucose = 80.0 ± 8.5 mM, K i l-phenylalanine = 90.0 ± 9.2 mM, K i d-glucose = 13.6 ± 1.42 mM; CRL: k cat = 0.51 ± 0.06 mM h−1 (mg protein)−1, K m l-phenylalanine = 10.0 ± 0.98 mM, K m d-glucose = 6.0 ± 0.64 mM, K i d-glucose = 8.5 ± 0.81 mM.  相似文献   

18.
Vitreoscilla hemoglobin (VHb) gene vgb equipped with a native promoter Pvgb or a tac promoter Ptac was introduced into Corynebacterium glutamicum ATCC14067, respectively. Ptac was proven to be more suitable for expressing VHb protein in higher concentration in both Escherichia coli and C. glutamicum strains compared with the native vgb promoter Pvgb. VHb-expressing C. glutamicum exhibited higher oxygen uptake rate and enhanced cell growth. Recombinant C. glutamicum harboring vgb gene equipped with Ptac promoter produced 23% more l-glutamate in shake-flask culture and grew to 30% more cell density and formed 22% more l-glutamate in fermentor studies compared with the wild-type strain. When a site-directed mutagenesis in which Tyr405 was replaced by a phenylalanine residue (Y405F) was performed on glutamine synthesis gene, recombinant C. glutamicum overexpressing the mutated gene glnA′ was able to produce l-glutamine effectively. Co-expression of vgb and glnA′ genes in C. glutamicum produced 17 g/l l-glutamine in shake flask culture, approximately 30% more than that produced by the recombinant harboring only glnA′ gene. In fermentor cultivation, the recombinant yielded 25% more cells and produced 40.5 g/l l-glutamine. In this study, it was clearly demonstrated that VHb significantly enhanced cell growth, l-glutamate, and l-glutamine production by recombinant C. glutamicum.  相似文献   

19.
Exogenously applied ABA-β-d-glucopyranosyl ester (ABA-GE) inhibited shoot growth of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), Digitaria sanguinalis L., timothy (Pheleum pratense L.) and ryegrass (Lolium multiflorum Lam.) seedlings at concentrations greater than 0.1 μM. The growth inhibitory activity of ABA-GE on these shoots was 26–40% of that of (+)-ABA. ABA-β-d-glucosidase activities in these seedlings were 11–31 nmol mg−1 protein min−1. These results suggests that exogenously applied ABA-GE may be absorbed by plant roots and hydrolyzed by ABA-β-d-glucosidase, and liberated free ABA may induce the growth inhibition in these plants. Thus, although ABA-GE had been thought to be physiologically inactive ABA conjugate, ABA-GE may have important physiological functions rather than an inactive conjugated ABA form.  相似文献   

20.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号