首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rabbits, generalized seizures were induced by methoxypyridoxine, and changes in amino acid concentrations of 15 brain regions were investigated before seizure onset and during the course of sustained epileptiform activity. As previously reported, gamma-aminobutyric acid (GABA) concentration decreased preictally in most regions. At the same time, taurine level was elevated in the hypothalamus, thalamus, hippocampus, caudatum, and frontal cortex. After 90 min of seizures, it was significantly decreased in the hypothalamus, periaqueductal grey, substantia nigra, frontal cortex, and cerebellum. Glycine content was reduced preictally only in the substantia nigra; after seizure onset its concentration rose in all brain areas. Glutamate content in the frontal cortex decreased before seizure onset; after 1.5 h of seizures, its concentration in cerebellum, caudatum, and hippocampus was reduced. Aspartate level was decreased in most areas after sustained seizures; in putamen, however, it was elevated. In contrast, glutamine content increased preictally in the superior colliculus and in all brain areas by approximately 200% after 90 min of seizures. Alanine and valine content also rose markedly in most brain areas after prolonged seizures, and threonine showed the same tendency. The single brain regions were observed to respond to methoxypyridoxine in highly individualistic ways. For example, the glycine content of the substantia nigra, which is believed to utilize this amino acid as a neurotransmitter, decreased preictally. The potential importance of the superior colliculus in seizure induction is considered in view of the early rise in glutamine level. The antagonistic preictal behavior of taurine and GABA is discussed with respect to synthesis, uptake from the blood, and antiepileptic properties.  相似文献   

2.
It is well known that a dietary restriction of vitamin B-6 during gestation and lactation produces spontaneous seizures in neonatal animals. Since pyridoxal phosphate, one of the biologically active forms of vitamin B-6, is the cofactor for GAD the neonatal seizures have been attributed to low levels of brain GABA as a result of cofactor depletion. Although GABA levels are significantly lower in B-6 restricted neonatal rats with spontaneous seizures, seizure activity is not present in B-6 deficient adult rats or 28 day old rats in the present study, despite significantly low levels of brain GABA. These facts suggest that depletion of GABA is not the only biochemical alteration essential for the emergence of seizures. In the present study, the effect of vitamin B-6 undernutrition on the concentrations of the neuroactive amino acids, Glu, Gly, Tau, and GABA was determined in selected regions of the developing rat brain. The results show that the concentrations of Glu, Tau, and GABA were significantly lower and GLY significantly higher in selected brain regions of the B-6 restricted 14 day old rat compared to control tissue. Most of these changes were unique to 14 days of age, the time when spontaneous seizures are observed, and not present at 28 or 56 days of age when seizures are absent. This pattern of amino acid changes in the brain and the magnitude of the changes was consistent with those measured in a variety of chemically-induced animal models of epilepsy and in human epileptic foci. The regional distribution of amino acid changes was associated with brain regions which have been suggested to be responsible for the initiation and propagation of seizure activity. Two unique findings were also made in this study. First, there was a regional brain heterogeneity in the age-associated loss of brain Tau concentrations with the pons/medulla and substantia nigra appearing to be highly vulnerable and the hippocampus quite resistant to the loss of Tau. A second finding was the normalization of the neonatal GABA deficit in most brain regions by 56 days of age. The normalization of brain GABA was present in the face of continued dietary vitamin B-6 restriction. In summary, this study shows that the neuroactive amino acids Glu, Gly, Tau, and GABA are markedly altered in the seizure-prone vitamin B-6 restricted neonatal rat brain. The alterations in the brain concentration of Glu, Gly, and Tau may play an equally important role as GABA in the underlying mechanism of seizures associated with this condition.Abbreviations GAD Glutamic acid decarboxylase - GABA gamma-aminobutyric acid - Glu glutamate - Gly glycine - Tau taurine - CNS central nervous system - CTX cortex - HIPP hippocampus - C/P caudate/putamen - SN substantia nigra - Cb cerebellum - P/M pons/medulla  相似文献   

3.
Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive, genetic components and sex-specific seizure expression. Multiple linkage and population association studies have connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus results in embryonic lethality while heterozygous Brd2+/- mice are viable and overtly normal. However, using the flurothyl model, we now show, that compared to the Brd2+/+ littermates, Brd2+/- males have a decreased clonic, and females a decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in three out of five recorded Brd2+/- female mice. Anatomical analysis of specific regions of the brain further revealed significant differences in Brd2+/- vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin- or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/- mice, compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67 expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased in Brd2+/- mice, further supporting GABA downregulation. Our data show that the non-channel-encoding, developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2's involvement in human IGE.  相似文献   

4.
Abstract: We investigated the effects of continuous intranigral perfusion of dopamine D1 and D2 receptor agonists and antagonists on the biotransformation of locally applied l -DOPA to dopamine in the substantia nigra of freely moving rats by means of in vivo microdialysis. The "dual-probe" mode was used to monitor simultaneously changes in extracellular dopamine levels in the substantia nigra and the ipsilateral striatum. Intranigral perfusion of 10 µ M l -DOPA for 20 min induced a significant 180-fold increase in extracellular nigral dopamine level. No effect of the intranigral l -DOPA administration was observed on dopamine levels in the ipsilateral striatum, suggesting a tight control of extracellular dopamine in the striatum after enhanced nigral dopamine levels. Continuous nigral infusion with the D1 receptor agonist CY 208243 (10 µ M ) and with the D2 receptor agonist quinpirole at 10 µ M (a nonselective concentration) attenuated the l -DOPA-induced increase in dopamine in the substantia nigra by 85 and 75%, respectively. However, perfusion of the substantia nigra with a lower concentration of quinpirole (1 µ M ) and the D1 antagonist SCH 23390 (10 µ M ) did not affect the nigral l -DOPA biotransformation. The D2 antagonist (−)-sulpiride (10 µ M ) also attenuated the l -DOPA-induced dopamine release in the substantia nigra to ∼10% of that of the control experiments. We confirm that there is an important biotransformation of l -DOPA to dopamine in the substantia nigra. The high concentrations of dopamine formed after l -DOPA administration may be the cause of dyskinesias or further oxidative stress in Parkinson's disease. Simultaneous administration of D1 receptor agonists with l -DOPA attenuates the biotransformation of l -DOPA to dopamine in the substantia nigra. The observed effects could occur via changes in nigral GABA release that in turn influence the firing rate of the nigral dopaminergic neurons.  相似文献   

5.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

6.
The binding of GABA to postsynaptic receptors was studied in the cerebral and cerebellar cortex, caudate nucleus, putamen, pallidum and substantia nigra from autopsy brains of 12 parkinsonian patients and 11 controls. GABA receptor binding in the substantia nigra was significantly decreased in the parkinsonian brain. In the other brain regions, however, GABA binding was unchanged. There was no correlation between GABA binding and sex, age, duration or severity of the disease. The results suggest the involvement of nigral GABA receptor in Parkinson's disease.  相似文献   

7.
It was shown in the experiments on rats that the repeated picrotoxin administration resulted in the kindling of generalized seizures. Generalized convulsions were followed by the development of either postictal depression or explosiveness. The injection of mu-opiate agonist met-enkephalin into hippocampus of kindled rats resulted in the increase in the severity of seizure reactions which were induced by picrotoxin and also in the increase in the number of animals with postictal explosiveness. The injection of dynorphin-A-1-13 (kappa-opiate agonist) into substantia nigra reticulata induced the locomotor depression which was like one in postictal period and resulted in the decrease of picrotoxin-induced seizures severity. It was concluded that mu-opiate system of hippocampus took part in the formation of generator of pathologically enhanced excitation in the structure during kindling and the development of seizure syndrome, providing also the postictal explosiveness. Kappa-opiate system of substantia nigra plays an important role in the activation of the antiepileptic system, limitation of seizures and the development of postictal depression.  相似文献   

8.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

9.
In Parkinson's disease the progressive loss of nigrostriatal dopamine neurons leads to striatal dopamine deficiency and correlates with the severity of parkinsonian disability. The findings concerning dopamine receptors both in vitro and in vivo are not consistent, possibly reflecting differences in patient populations, but the presynaptic defect in dopaminergic neurotransmission is greater than that seen in postsynaptic receptor binding studies. The cholinergic neurons in the extrapyramidal nuclei are relatively well preserved, but subcortico-cortical and -hippocampal cholinergic neurons degenerate in relation to the degree of dementia. The decreased GABA receptor binding in the parkinsonian substantia nigra possibly reflects the loss of nigral dopamine neurons, since nigral GABA receptors are located on these neurons. Of the various neuropeptides, the concentration of met- and leu-enkephalin seems to be reduced in the striatum. In the substantia nigra the concentration of substance P decreases, together with the met-enkephalin and cholecystokinin levels. The concentration of somatostatin decreases in the frontal cortex and hippocampus of demented patients. With the exception of the association between cortical somatostatin deficiency and intellectual deterioration, the role of the neuropeptides in the pathophysiology and clinical features of Parkinson's disease are not yet fully understood.  相似文献   

10.
In vivo release of transmitters in the cat basal ganglia   总被引:3,自引:0,他引:3  
The release of transmitters was studied in various structures of the basal ganglia in cats implanted with several push-pull cannulas. Local depolarization enhanced Met-enkephalin release in the globus pallidus. Activation of striatonigral substance P(SP) neutrons stimulated the transmitter release from terminals. Unilateral electrical stimulation of the caudate nucleus evoked GABA release in both substantia nigrae and pallidoentopeduncular nuclei. The unilateral facilitation or interruption of nigral SP transmission modified dopamine (DA) release in the ipsilateral caudate nucleus in contrast, modifications of GABAergic or glycinergic nigral transmissions induced bilateral symmetrical effects, whereas bilateral asymmetrical changes in DA release in the two caudate nuclei were seen during the unilateral modification of nigral DA transmission. Changes in the dendritic release of DA induced changes in serotonin release both in the substantia nigra and in the ipsilateral caudate nucleus. Finally, it will be shown that acetylcholinesterase can be released from the substantia nigra and the caudate nucleus through processes dependent on nerve activity.  相似文献   

11.
Changes in amino acid concentrations were investigated in selected regions of rat brain prior to the onset and during the course of epileptiform seizures induced by L-homocysteine. The concentration of gamma-aminobutyric acid (GABA) decreased preictally in substantia nigra (-18%), caudate putamen (-26%), and inferior colliculus (-46%). After seizure onset, the GABA content was further reduced in substantia nigra (-31%) and additionally in hippocampus (-18%). Preictal taurine levels were elevated in globus pallidus (+26%) and caudate putamen (+13%) but returned to normal after seizure onset. However, in hippocampus, taurine decreased both preictally (-22%) and after seizure onset (-56%). Glycine was reduced preictally only in globus pallidus (-13%). After seizure onset the direction of its concentration change varied in the brain regions studied. Glutamate levels decreased preictally in hippocampus (-10%) and hypothalamus (-46%) but increased in globus pallidus (+14%). Normal levels were detectable after seizure onset in hypothalamus and globus pallidus but a further reduction in hippocampus (-59%) and significant reductions in substantia nigra (-15%) and caudate putamen (-17%) were detected. Aspartate was elevated in hippocampus, both preictally (+49%) and after seizure onset (+21%) while at the same phases in globus pallidus a consistent reduction (-30%) was observed. The glutamine content increased preictally in globus pallidus (+41%) and hypothalamus (+36%), and in all brain areas during the ictal phase of seizure, the hippocampus exhibiting a dramatic increase (approximately 300%). The contents of serine and alanine were altered in most regions studied only after seizure onset, with the exception of the hippocampus, where a decrease (-41%) of serine was observed preictally.  相似文献   

12.
Seizure susceptibility and GABA metabolism were altered in the substantia nigra [SN] of adult male Sprague Dawley rats when these animals were acclimating to an altered plasma osmolality. Changes in GABA metabolism were measured in vivo in SN of the freely moving rat. Suitable precautions were taken to avoid any post-mortem flux of glutamate to GABA and to correct for the underestimation of GABA build up in SN due to the finite diffusion rate of -vinyl GABA [GVG] after stereotaxic injection of small amounts into one side of the brain. Control experiments provided evidence that changes in osmolality, within a normal physiological range, did not affect significantly -aminobutyric acid transaminase [GABA-T]. Also kindling via the medial septum [MS], in the absence of electrical stimulation did not alter GABA metabolism in SN, thus providing a stable baseline for studies of osmotic effects. Hyperosmolality was associated with a rise in seizure thresholds, with a marked reduction of the rate of GABA synthesis in SN, and with a substantial increase in turnover time of the GABA pool. Hypoosmolality, of a degree known to be associated with mild cerebral edema and swelling localized to astrocytes, markedly reduced seizure threshold, and reduced GABA pool size in SN, but did not alter the rate of GABA synthesis significantly. These results demonstrate by new and independent means the relationship between GABA metabolism in the SN and seizure susceptibility in vivo.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

13.
Triple probe microdialysis was employed to investigate whether striatal NR2A and NR2B subunit containing NMDA receptors regulate the activity of striato-pallidal and striato-nigral projection neurons. Probes were implanted in the striatum, ipsilateral globus pallidus and substantia nigra reticulata. Intrastriatal perfusion with the NR2A subunit selective antagonist ( R )-[( S )-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) reduced pallidal GABA and increased nigral glutamate (GLU) release whereas perfusion with the NR2B subunit selective antagonist ( R -( R *, S *)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol (Ro 25-6981) reduced nigral GABA and elevated striatal and pallidal GLU release. To confirm that changes in GABA levels were because of blockade of (GLUergic-driven) tonic activity of striatofugal neurons, tetrodotoxin was perfused in the striatum. Tetrodotoxin reduced both pallidal and nigral GABA release without changing GLU levels. To investigate whether striatal NR2A and NR2B subunits were also involved in phasic activation of striatofugal neurons, NVP-AAM077 and Ro 25-6981 were challenged against a NMDA concentration able to evoke GABA release in the three areas. Both antagonists prevented the NMDA-induced striatal GABA release. NVP-AAM077 also prevented the NMDA-induced surge in GABA release in the globus pallidus, whereas Ro 25-6981 attenuated it in the substantia nigra. We conclude that striatal NMDA receptors containing NR2A and NR2B subunits preferentially regulate the striato-pallidal and striato-nigral projection neurons, respectively.  相似文献   

14.
The specific binding of [3H]gamma-aminobutyric acid (GABA) to nigral GABA receptors has been studied in postmortem brains from controls and patients with Huntington's disease (HD). A specific increase in the number of high-affinity binding sites for [3H]GABA was observed in HD patients, analogous to changes observed in rat substantia nigra [3H]GABA binding after striatal kainic acid (KA) lesion. The results provide further support for the striatal KA lesion in the rat as an animal model of HD. The implications of the results for the proposed therapeutic potential of GABA agonists in HD are discussed.  相似文献   

15.
Microinjections of the GABA antagonist, bicuculline, where shown to selectively activate subthalamic neurons in the rat. Stimulation of subthalamic efferent pathways increased the neuronal discharge in the pallidal complex and pars reticulata of the substantia nigra. Most nigral dopaminergic neurons displayed a slight decrease in firing rate. According to these results, which are more coherent than those obtained through electrical stimulation, the subthalamic nucleus may be considered a source of tonic activation of the two output structures of the basal ganglia viz, pars reticulata of the substantia nigra and entopeduncular nucleus.  相似文献   

16.
Abstract: A push-pull cannula technique was used to study the in vivo release of endogenous GABA in the rat substantia nigra. Intranigral application of both dopamine (DA) and apomorphine produced biphasic changes in the rate of endogenous GABA release. The presence of 10 μM-DA in the perfusion medium increased GABA release (140%). At 25 μM-DA, both stimulation and inhibition of the nigral GABA release were observed. Higher concentrations of DA produced a decrease of the GABA release (50%). A small amount of apomorphine (10 μM in the perfusion medium) resulted in a decrease in GABA release (75%). Application of 25 μM-apomorphine produces opposite effects, similar to those observed after addition of 25 μM-DA. We observed an enhanced GABA release from the substantia nigra at 100 μM-apomorphine in the perfusion medium (360%). The presence of 5 μM-haloperidol produced a small decrease in the rate of GABA release (80%). Both the inhibitory effect of 25 μM-DA and the excitatory effect of 100 μM-apomorphine could be blocked by haloperidol added to the perfusion medium. Dibutyryl cyclic AMP (1.5 mM) and 2-amino-6, 7-dihydroxyl(1, 2, 3, 4) tetrahydronapthalene (ADTN) (50 μM) added to the perfusion medium produced an inhibition of nigral GABA release (55% and 35% respectively) similar to that observed after addition of 50 μM-DA. The amounts of lysine and ethanolamine (measured with GABA concurrently) released into the perfusion medium did not change in most of the experiments. The changes in the rates of release of these compounds that were observed in some experiments were either in the same or in the opposite direction of the change in GABA release. These results suggest that dopaminergic processes within the substantia nigra affect GABA-ergic neurotransmission and that DA and apomorphine have different effects on GABA release.  相似文献   

17.
Chronic treatment with SCH 23390, a selective D-1 dopamine receptor antagonist, elicited a 32% increase in the density of 3H-SCH 23390 binding sites in nigral membrane preparations but failed to change the apparent KD of the ligand for its binding sites. Haloperidol, a D-2 dopamine receptor antagonist which blocks the dopamine-sensitive adenylate cyclase and (-) sulpiride, a selective D-2 dopamine receptor blocker, which does not block the dopamine-sensitive adenylate cyclase, failed to change both the Bmax and KD of 3H-SCH 23390 binding. Finally, the intrastriatal injection of kainic acid produced a marked decrease of both GAD activity and GABA content and 3H-SCH 23390 binding sites (65%) in the homolateral substantia nigra. The results show that in the rat substantia nigra most of the 3H-SCH 23390 binding sites have a presynaptic localization on the striato-nigral GABAergic afferent terminals and suggest that dopamine released from nigral dendrites exerts a tonic influence on these presynaptic D-1 dopamine receptors.  相似文献   

18.
Cortical epileptic focus was produced by an intracortical injection of FeCl3 in rat cerebral cortex using standard techniques. How after its onset in the cortical focus, the epileptiform activity evolved with time in the thalamus and substantia nigra has been determined. To study the propagation of the epileptiform activity, the local EEG and multiple unit action potentials were recorded from these structures simultaneously with the cortical epileptiform EEG. The results showed that in thalamus and substantia nigra epileptiform activity appeared simultaneously with that in the cortical focus. Intensity of epileptic activity in thalamus and substantia nigra on the whole increased in parallel with that in the cortical focus. The results suggest that the thalamic and nigral epileptiform activity may reinforce the cortical epileptiform activity.  相似文献   

19.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   

20.
Systemic acetyl-L-carnitine elevates nigral levels of glutathione and GABA   总被引:1,自引:0,他引:1  
Amino acid and reduced glutathione (GSH) levels in substantia nigra (SN) as well as striatal monoamine levels were measured in acetyl-L-carnitine (ALCar) treated and control Swiss-Webster mice. ALCar, L carnitine, or saline were administered i.p. to mice for 5 days and mice were decapitated 24 hours following the last injection. Substantia nigra and striata were isolated within 2.5 and 3 min., respectively, and frozen immediately on dry ice. A significant dose-dependent increase of nigral GABA was observed following ALCar treatment; GABA levels were also increased by administration of carnitine. Nigral GSH levels were also increased. Striatal levels of dopamine and metabolites were not significantly affected by ALCar or carnitine. These results, suggest that ALCar may be useful in treating symptoms of neuronal dysfunction related to accumulation of metabolic waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号