首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

2.
Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co‐occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA. We used genetic clustering and multiple regression methods to identify associations between genetic structure and permanent landscape features, past landscape composition and landscape change in each species. Two aquatic generalists (the painted turtle, Chrysemys picta, and the snapping turtle Chelydra serpentina) both exhibited population genetic structure consistent with isolation by distance, modulated by aquatic landscape features. Genetic divergence for the more terrestrial Blanding's turtle (Emydoidea blandingii), on the other hand, was not strongly associated with geographic distance or aquatic features, and Bayesian clustering analysis indicated that many Emydoidea populations were genetically isolated. Despite long generation times, all three species exhibited associations between genetic structure and postsettlement habitat change, indicating that long generation times may not be sufficient to delay genetic drift resulting from recent habitat fragmentation. The concordances in genetic structure observed between aquatic species, as well as isolation in the endangered, long‐lived Emydoidea, reinforce the need to consider both landscape composition and demographic factors in assessing differential responses to habitat change in co‐occurring species.  相似文献   

3.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

4.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

5.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

6.
There are strong links between habitat fragmentation, population size and genetic structure. However, to fully understand the long‐term effects of fragmentation on population viability, it is necessary to first understand the relationship between life history traits and genetic characteristics in un‐fragmented habitats. This is best done through comparing patterns of genetic diversity in sympatric species, since relative data may be maximally informative. We compared genetic structure and diversity among three sympatric small mammals – of which two were marsupial species – over a small spatial scale (<4 km) using microsatellite genotypic data from individuals sampled from four grids spaced in a linear fashion. Expected heterozygosity was high for all three species (average He range: 0.781–0.886), but the smallest species had significantly higher genetic diversity (both heterozygosity and allelic diversity) than the two larger species, possibly due to it having; 1) large effective population size and little overlap in generations, and/or 2) high mutation rates in large alleles. Genotypic isolation by distance (measured as relatedness) was detected only at the smallest distance of 750 m, for any species. In the two marsupial species Fst, relatedness and percentage of individuals assigned to site of capture were significantly lower in males than in females, corroborating previous reports of male‐biased dispersal. However, sex‐biased dispersal was not detected for the third species (the native bush rat Rattus fuscipes), and presence of significant heterozygous deficits suggested this resulted in inbreeding within kin‐structured demes. We speculate that habitat fragmentation will have differing effects on population dynamics, social organisation and mating systems for the two marsupial species compared to the native murid rodent, due to their differing population structure and divergent inbreeding avoidance mechanisms.  相似文献   

7.
The intensification of agricultural land use over wide parts of Europe has led to the decline of semi-natural habitats, such as extensively used meadows, with those that remain often being small and isolated. These rapid changes in land use during recent decades have strongly affected populations inhabiting these ecosystems. Increasing habitat deterioration and declining permeability of the surrounding landscape matrix disrupt the gene flow within metapopulations. The burnet moth species Zygaena loti has suffered strongly from recent habitat fragmentation, as reflected by its declining abundance. We have studied its population genetic structure and found a high level of genetic diversity in some of the populations analysed, while others display low genetic diversity and a lack of heterozygosity. Zygaena loti was formerly highly abundant in meadows and along the skirts of forests. However, the species is currently restricted to isolated habitat remnants, which is reflected by the high genetic divergence among populations (F ST: 0.136). Species distribution modelling as well as the spatial examination of panmictic clusters within the study area strongly support a scattered population structure for this species. We suggest that populations with a high level of genetic diversity still represent the former genetic structure of interconnected populations, while populations with low numbers of alleles, high F IS values, and a lack of heterozygosity display the negative effects of reduced interconnectivity. A continuous exchange of individuals is necessary to maintain high genetic variability. Based on these results, we draw the general conclusion that more common taxa with originally large population networks and high genetic diversity suffer stronger from sudden habitat fragmentation than highly specialised species with lower genetic diversity which have persisted in isolated patches for long periods of time.  相似文献   

8.
Many species, including most amphibians, undergo an ontogenetic niche shift (ONS) from an aquatic larval stage to a terrestrial adult stage. We use the ratio of aquatic to terrestrial habitat in a landscape as a tool to understand the influence of landscape context on the population growth of ONS species. The aquatic to terrestrial ratio (ATR) of habitats can be viewed as an analog to the influence of resource ratios on the population growth of consumers and depends on the degree to which each habitat type limits the growth of a given population. Population growth rates of shorter‐lived species tend to be more limited by demographic rates in early (aquatic) life stages. As a result, increasing the ATR should lead to a higher total population size in the landscape (and higher densities in the terrestrial habitat), but have little influence on the density of individuals in any given aquatic habitat. Alternatively, population growth rates of longer‐lived species tend to be more limited by demographic rates in later (terrestrial) life stages and increasing the ATR should have little influence on the total population size in the landscape, but decrease the density of individuals in any given aquatic habitat. We show that among‐landscape variation in the breeding‐pond densities of three widespread amphibians with contrasting life histories is consistent with this framework. Within‐pond densities of Pseudacris crucifer, a species with short‐lived adults, were not influenced by ATR, whereas within‐pond densities of Hyla versicolor, a longer‐lived member of the same family (Hylidae), declined as ATR increased. Ambystoma maculatum, a long‐lived salamander, also had lower densities in ponds with higher ATR. Because A. maculatum larvae are important predators in ponds, we use structural equation modeling to show that landscape context (ATR) can moderate community structure via direct (amphibian abundances) and indirect (prey species richness) effects.  相似文献   

9.
Many plant species have pollination and seed dispersal systems and evolutionary histories that have produced strong genetic structuring. These genetic patterns may be consistent with expectations following recent anthropogenic fragmentation, making it difficult to detect fragmentation effects if no prefragmentation genetic data are available. We used microsatellite markers to investigate whether severe habitat fragmentation may have affected the structure and diversity of populations of the endangered Australian bird‐pollinated shrub Grevillea caleyi R.Br., by comparing current patterns of genetic structure and diversity with those of the closely related G. longifolia R.Br. that has a similar life history but has not experienced anthropogenic fragmentation. Grevillea caleyi and G. longifolia showed similar and substantial population subdivision at all spatial levels (global F′ST = 0.615 and 0.454; Sp = 0.039 and 0.066), marked isolation by distance and large heterozygous deficiencies. These characteristics suggest long‐term effects of inbreeding in self‐compatible species that have poor seed dispersal, limited connectivity via pollen flow and undergo population bottlenecks because of periodic fires. Highly structured allele size distributions, most notably in G. caleyi, imply historical processes of drift and mutation were important in isolated subpopulations. Genetic diversity did not vary with population size but was lower in more isolated populations for both species. Through this comparison, we reject the hypothesis that anthropogenic fragmentation has impacted substantially on the genetic composition or structure of G. caleyi populations. Our results suggest that highly self‐compatible species with limited dispersal may be relatively resilient to the genetic changes predicted to follow habitat fragmentation.  相似文献   

10.
Madagascar's ring‐tailed lemurs (Lemur catta) are experiencing rapid population declines due to ongoing habitat loss and fragmentation, as well as increasing exploitation for bushmeat and the illegal pet trade. Despite being the focus of extensive and ongoing behavioral studies, there is comparatively little known about the genetic population structuring of the species. Here, we present the most comprehensive population genetic analysis of ring‐tailed lemurs to date from across their likely remaining geographic range. We assessed levels of genetic diversity and population genetic structure using multilocus genotypes for 106 adult individuals from nine geographically representative localities. Population structure and FST analyses revealed moderate genetic differentiation with localities being geographically partitioned into northern, southern, western and also potentially central clusters. Overall genetic diversity, in terms of allelic richness and observed heterozygosity, was high in the species (AR = 4.74, HO = 0.811). In fact, it is the highest among all published lemur estimates to date. While these results are encouraging, ring‐tailed lemurs are currently affected by ongoing habitat fragmentation and occur at lower densities in poorer quality habitats. The effects of continued isolation and fragmentation, coupled with climate‐driven environmental instability, will therefore likely impede the long‐term viability of the species.  相似文献   

11.
The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution, reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent habitat loss in a landscape marked by ancient patterns of population fragmentation within the Southwest Australian Floristic Region, a global biodiversity hotspot. Using seven polymorphic microsatellite loci, high levels of within-population diversity (mean alleles/locus = 6.73; mean H E = 0.690), weak genetic structuring among 13 remnant populations (F ST = 0.047) and a consistent deficit of heterozygotes from Hardy–Weinberg expectation were found across all populations (mean F IS = 0.22). Positive inbreeding coefficients are most likely due to Wahlund effects and/or inbreeding effects from highly correlated paternity and typically low fruit set. Indirect estimates of gene flow (Nm = 5.09 using F ST; Nm = 3.12 using the private alleles method) among populations reflects a historical capacity for gene flow through long distance pollen dispersal by sexually deceived wasp pollinators and/or long range dispersal of dust-like orchid seed. However, current levels of gene flow may be impacted by habitat destruction, fragmentation and reduced population size. A genetically divergent population was identified, which should be a high priority for conservation managers. Very weak genetic differentiation indicates that the movement and mixing of seeds from different populations for reintroduction programs should result in minimal negative genetic effects.  相似文献   

12.
Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range‐margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range‐margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500‐year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within‐population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (FST and Jost's Dest) and diversity within populations (FIS) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.  相似文献   

13.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

14.
Anthropogenic habitat fragmentation of species that live in naturally patchy metapopulations such as mountaintops or sky islands experiences two levels of patchiness. Effects of such multilevel patchiness on species have rarely been examined. Metapopulation theory suggests that patchy habitats could have varied impacts on persistence, dependent on differential migration. It is not known whether montane endemic species, evolutionarily adapted to natural patchiness, are able to disperse between anthropogenic fragments at similar spatial scales as natural patches. We investigated historic and contemporary gene flow between natural and anthropogenic patches across the distribution range of a Western Ghats sky‐island‐endemic bird species complex. Data from 14 microsatellites for 218 individuals detected major genetic structuring by deep valleys, including one hitherto undescribed barrier. As expected, we found strong effects of historic genetic differentiation across natural patches, but not across anthropogenic fragments. Contrastingly, contemporary differentiation (DPS) was higher relative to historic differentiation (FST) in anthropogenic fragments, despite the species’ ability to historically traverse shallow valleys. Simulations of recent isolation resulted in high DPS/FST values, confirming recent isolation in Western Ghats anthropogenic fragments and also suggesting that this ratio can be used to identifying recent fragmentation in the context of historic connectedness. We suggest that in this landscape, in addition to natural patchiness affecting population connectivity, anthropogenic fragmentation additionally impacts connectivity, making anthropogenic fragments akin to islands within natural islands of montane habitat, a pattern that may be recovered in other sky‐island systems.  相似文献   

15.
Comparisons of genetic diversity and population genetic structure among different life history stages provide important information on the effect of the different forces and micro‐evolutionary processes that mould diversity and genetic structure after fragmentation. Here we assessed genetic diversity and population genetic structure using 32 allozymic loci in adults, seeds, seedlings and juveniles of eight populations of the micro‐endemic shrub Cestrum miradorense in a highly fragmented cloud forest in central–eastern Mexico. We expected that due to its long history or rarity, this species may have endured the negative effects of fragmentation and would show moderate to high levels of genetic diversity. High genetic diversity (He = 0.445 ± 0.03), heterozygote excess (FIT = ?0.478 ± 0.034, FIS = ?0.578 ± 0.023) and low population differentiation (FST = 0.064 ± 0.011) were found. Seeds had higher genetic diversity (He = 0.467 ± 0.05) than the later stages (overall mean for adults, seedlings and juveniles He = 0.438 ± 0.08). High gene flow was observed despite the fact that the fragmentation process began more than 100 years ago. We conclude that the high genetic diversity was the result of natural selection, which favours heterozygote excess in all stages, coupled with a combination of a reproductive system and seed/pollen dispersal mechanisms that favour gene flow.  相似文献   

16.
Amphibians are often considered excellent environmental indicator species. Natural and man‐made landscape features are known to form effective genetic barriers to amphibian populations; however, amphibians with different characteristics may have different species–landscape interaction patterns. We conducted a comparative landscape genetic analysis of two closely related syntopic frog species from central China, Pelophylax nigromaculatus (PN) and Fejervarya limnocharis (FL). These two species differ in several key life history traits; PN has a larger body size and larger clutch size, and reaches sexual maturity later than FL. Microsatellite DNA data were collected and analyzed using conventional (FST, isolation by distance (IBD), AMOVA) and recently developed (Bayesian assignment test, isolation by resistance) landscape genetic methods. As predicted, a higher level of population structure in FL (FST′ = 0.401) than in PN (FST′ = 0.354) was detected, in addition to FL displaying strong IBD patterns (= .861) unlike PN (= .073). A general north–south break in FL populations was detected, consistent with the IBD pattern, while PN exhibited clustering of northern‐ and southern‐most populations, suggestive of altered dispersal patterns. Species‐specific resistant landscape features were also identified, with roads and land cover the main cause of resistance to FL, and elevation the main influence on PN. These different species–landscape interactions can be explained mostly by their life history traits, revealing that closely related and ecologically similar species have different responses to the same landscape features. Comparative landscape genetic studies are important in detecting such differences and refining generalizations about amphibians in monitoring environmental changes.  相似文献   

17.
With increasing human activities and associated landscape changes, distributions of terrestrial mammals become fragmented. These changes in distribution are often associated with reduced population sizes and loss of genetic connectivity and diversity (i.e., genetic erosion) which may further diminish a species' ability to respond to changing environmental conditions and lead to local population extinctions. We studied threatened boreal caribou (Rangifer tarandus caribou) populations across their distribution in Ontario/Manitoba (Canada) to assess changes in genetic diversity and connectivity in areas of high and low anthropogenic activity. Using data from >1,000 caribou and nine microsatellite loci, we assessed population genetic structure, genetic diversity, and recent migration rates using a combination of network and population genetic analyses. We used Bayesian clustering analyses to identify population genetic structure and explored spatial and temporal variation in those patterns by assembling networks based on RST and FST as historical and contemporary genetic edge distances, respectively. The Bayesian clustering analyses identified broad‐scale patterns of genetic structure and closely aligned with the RST network. The FST network revealed substantial contemporary genetic differentiation, particularly in areas presenting contemporary anthropogenic disturbances and habitat fragmentation. In general, relatively lower genetic diversity and greater genetic differentiation were detected along the southern range limit, differing from areas in the northern parts of the distribution. Moreover, estimation of migration rates suggested a northward movement of animals away from the southern range limit. The patterns of genetic erosion revealed in our study suggest ongoing range retraction of boreal caribou in central Canada.  相似文献   

18.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   

19.
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.  相似文献   

20.
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life‐history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species‐level life‐history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's GST, and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's GST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号