首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The social amoebae possess a sexual cycle that involves transient mutlicellularity: first a zygote attracts surrounding haploid amoebae to form a walled aggregate around it, and then cannibalizes these peripheral cells, eventually forming a dormant single-celled macrocyst. Self-fertile homothallic isolates occur as well as breeding groups of self-infertile heterothallic cells, which commonly have more than two mating types. The mating-type locus of the widely studied model organism Dictyostelium discoideum, which has three mating types, has recently been identified. Two of the three mating types are determined by single putative regulatory genes bearing no mutual similarity, while the third is specified by homologues of both of these genes. This is the first sex-determining locus of an Amoebozoan to be described and, since none of the key regulators show homology to known proteins, may be a first glimpse of a novel mode of regulation used in these organisms. The sexual cycle of dictyostelids has been relatively neglected, but continues to yield much interesting biology as well as having the potential to add to the genetic tools available for the study of these organisms.  相似文献   

2.
A microcinematographic analysis of the behaviour and movements of cells and cell masses in mated cultures (NC4 X VI2) of Dictyostelium discoideum indicates that a chemotactic process directs cell aggregation during macrocyst development. Zygote giant cells form before aggregation begins and act as the aggregation centres. Young multicellular macrocyst stages are sources of cyclic AMP, and amoebae from macrocyst cultures orient chemotactically to cyclic AMP. The data, coupled with other characteristics such as pulsatile streaming, suggest that the aggregation process leading to macrycyst development is the same as that occurring during fruit construction. Other aspects of sexual development are also discussed. Based upon these data, we propose a model for the sequence of events leading to macrocyst development in D. discoideum.  相似文献   

3.
Dictyostelium mucoroides -7 (Dm7) and a mutant (MF1) derived from it exhibit homothallic macrocyst formation in the sexual process. As previously shown, the zygote formation during macrocyst formation is induced by a potent plant hormone, ethylene. The present work was undertaken to know if ethylene is also involved in heterothallic and homothallic macrocyst formation in D. discoideum. In heterothallic macrocyst formation between NC4 and V12M2 cells, ethionine, an analogue of methionine, inhibits macrocyst formation through arresting specifically the acquisition process of fusion competence. Such an inhibitory effect of ethionine was almost completely cancelled by co-application of ACC (1-aminocyclopropane-1-carboxylic acid), the immediate precursor of ethylene. Essentially the same effects of ethionine and ACC were also noticed on homothallic macrocyst formation in D. discoideum AC4. Thus it seems most likely that ethylene is required for the acquisition of fusion competence during macrocyst formation, and that in a variety of strains examined there is a common mechanism regulated by ethylene, beyond the difference of sexual modes.  相似文献   

4.
Fluorescein-conjugated and non-conjugated lectins were used to determine which surface sugars are involved in the early events of sexual (macrocyst) development in Dictyostelium discoideum. Only zygote giant cells showed unique binding of FITC-WGA and FITC-PNA while all cell types (amoebae, gametes, binucleates, giant cells) showed identical patterns of FITC-Con A, -Gorse and -RCA II binding. In spite of its non-selective labelling of all cell types, Con A inhibited macrocyst formation. The temporal addition of Con A with and without specific hapten sugars indicates the importance of both D-mannose and D-glucose in phagocytosis and, possibly, cell fusion. WGA also inhibited macrocyst formation. Varying the time of addition of the lectin plus/minus its primary hapten sugar implicates N-acetylglucosamine as being important in cell fusion. Neither Gorse, RCA II nor PNA had any detectable inhibitory effects on macrocyst development leaving the appearance of increased PNA receptors at the giant cell surface as an enigma.  相似文献   

5.
The development of Dictyostelium discoideum may proceed by two pathways, macrocyst or fruiting-body formation, the former being the sexual and the latter the asexual cycle. The pathway of development depends on the presence or absence of zygote giant cells which are produced through fusion of opposite mating-type cells in a population, in heterothallic strains. During the early stages of macrocyst development the patterns of developmentally regulated proteins were noted to differ considerably from those during fruiting-body development. Furthermore, the haploid cells around zygote giant cells synthesized a large number of specific proteins for macrocyst development through the influence of giant cells.  相似文献   

6.
Cellular slime mould Dictyostelium discoideum propagates as single haploid cells and under certain environmental conditions enters into a sexual cycle called macrocyst formation. There are homothallic and heterothallic strains reported, the former being able to form macrocysts in clonal cell populations while the latter to do so only in the presence of opposite mating-type strains. Molecular basis for differential mating systems is an intersting subject totally unknown yet. In the present study, sexual cell interactions in AC4, a homothallic strain of D. discoideum, was studied in comparison with the heterothallic mating system. The conditoned medium of AC4 cells was found to promote the sexual cell fusion among themselves. In addition, it also enhanced the cell fusion between heterothallic strains. Furthermore, the conditioned medium obtained from the mated culture of heterothallic strains reported to induce the sexual cell fusion in the heterothallic strains (Saga and Yanagisawa, 1983) was found also to promote the cell fusion in AC4. These results suggest that common regulatory mechanisms operate for sexual cell fusion among different mating systems in D. discoideum.  相似文献   

7.
Methionine added to minimal medium overcomes the repressing effects of ammonium and cyclic AMP (cAMP) on sexual development and efficiently induces mating and sporulation in homothallic strains of Schizosaccharomyces pombe. In heterothallic strains it induces G1 arrest when cells enter stationary phase. We show that methionine reduces the intracellular cAMP pool and induces the expression of at least two cAMP-repressible genes, including fbp1 and ste11. The easiest interpretation of the results is that methionine induces sexual development via a cAMP-dependent ste11 signalling pathway.  相似文献   

8.
《Developmental biology》1986,118(1):95-102
Macrocyst development in Dictyostelium discoideum, is generally considered a sexual phase. This development is initiated by the formation of a giant cell, the result of the fusion of two different mating type haploid cells, such as NC4 and HM1. The giant cell engulfs unfused surrounding cells to develop into a macrocyst. Therefore, if the macrocyst is a sexual structure, the giant cell must be a diploid zygote. However, under certain conditions, a very large multinucleated giant cell containing several dozens of nuclei is formed, followed by normal development into a macrocyst. In such a multinucleated giant cell, it was found that only two nuclei fuse together to produce a diploid zygote and all others disappear at the early stage of development. The diploid nucleus undergoes meiosis and subsequently subdivides into a number of haploid progeny cells later released from the macrocyst to initiate new life cycles.  相似文献   

9.
In Dictyostelium discoideum cyclic AMP (cAMP) metabolism during macrocyst development, i.e., the sexual cycle of this organism, and in giant cells, i.e., fusion products from opposite mating-type cells, was investigated. The pattern of change in cAMP levels during macrocyst development differed considerably from that observed during fruiting-body formation, i.e., the asexual cycle. Giant cells produced and excreted considerable amounts of cAMP. Adenylate cyclase activity catalyzing cAMP production in giant cells was comparable to that of unfused cells. However, the activity of membrane-bound phosphodiesterase in giant cells was extremely low, and no extracellular phosphodiesterase was excreted. A phosphodiesterase inhibitory protein was secreted in excess by giant cells.  相似文献   

10.
Unequal investment by different sexes in their progeny is common and includes differential investment in the zygote and differential care of the young. The social amoeba Dictyostelium discoideum has a sexual stage in which isogamous cells of any two of the three mating types fuse to form a zygote which then attracts hundreds of other cells to the macrocyst. The latter cells are cannibalized and so make no genetic contribution to reproduction. Previous literature suggests that this sacrifice may be induced in cells of one mating type by cells of another, resulting in a higher than expected production of macrocysts when the inducing type is rare and giving a reproductive advantage to this social cheat. We tested this hypothesis in eight trios of field‐collected clones of each of the three D. discoideum mating types by measuring macrocyst production at different pairwise frequencies. We found evidence that supported differential contribution in only two of the 24 clone pairs, so this pattern is rare and clone‐specific. In general, we did not reject the hypothesis that the mating types contribute cells relative to their proportion in the population. We also found a significant quadratic relationship between partner frequency and macrocyst production, suggesting that when one clone is rare, macrocyst production is limited by partner availability. We were also unable to replicate previous findings that macrocyst production could be induced in the absence of a compatible mating partner. Overall, mating type‐specific differential investment during sex is unlikely in microbial eukaryotes like D. discoideum.  相似文献   

11.
A novel and critical function of ethylene, a potent plant hormone, has been well documented in Dictyostelium, because it leads cells to the sexual development (macrocyst formation) by inducing zygote formation. Zygote formation (sexual cell fusion) and the subsequent nuclear fusion are the characteristic events occurring during macrocyst formation. A novel gene, zyg1 was found to be predominantly expressed during the sexual development, and its enforced expression actually induces zygote formation. As expected, the zygote inducer, ethylene enhances the expression of zyg1. Thus the function of ethylene has been verified at all of individual (macrocyst formation), cellular (zygote formation), and molecular levels (zyg1 expression). Based on our recent studies concerning the behavior and function of the zyg1 product (ZYG1 protein), the signal transduction pathways involved in zygote formation are proposed in this review.  相似文献   

12.
Nascent macrocysts of the cellular slime mold Dictyostelium mucoroides were dissociated enzymatically and the liberated cytophagic giant cells were partitioned by dextrin density gradient centrifugation. Enzymatic and cytochemical studies revealed that the primary wall is composed mainly of cellulose (β-1,4-glucan) associated with polysaccharides including hemicellulose, pectic substances and á-1,4-glucan. The buoyant density of the liberated cytophagic giant cells and peripheral cells was determined by density gradient centrifugation, and partitioning of the cells was possible due to the difference in this property. The process of macrocyst reconstitution was investigated using dissociated cells. The isolated cytophagic giant cell has a specific affinity for other cytophagic giant cells and predominantly ingests them by phagocytosis, while it retains the ability to ingest peripheral cells. The present study provides a clue for investigating the differentiation and development of sexual cells, since only the cytophagic giant cell gives rise to a zygote in macrocyst formation.  相似文献   

13.
14.
During the sexual cycle of Dictyostelium discoideum, zygote giant cells develop and serve as foci for further development by chemoattracting and cannibalizing hundreds of local amoebae. Previous work has shown that the phagocytic process bears similarities to and differences from asexual endocytosis. In the present study, sexual phagocytosis in D. discoideum was found to be species and developmental stage specific. It was inhibited selectively by glucose and concanavalin A. Although a partial, inhibitory effect of mannose on phagocytosis was not statistically significant, alpha-methylmannosamine, like alpha-methyl-glucose, significantly restored the phagocytic competence of giant cells treated with concanavalin A. Other sugars (N-acetyl-glucosamine, N-acetylgalactosamine, and galactose) and lectins (wheat germ agglutinin, Ulex europus type I, and Ricinis communis agglutinin type I) had no significant effect on sexual phagocytosis. Together these data indicate that a glucose-type receptor is involved in selective uptake of D. discoideum amoebae by giant cells.  相似文献   

15.
Sexual development in Dictyostelium discoideum is initiated by the fusion of opposite mating type cells to form zygote giant cells, which subsequently gather and phagocytose surrounding cells for nutrition to form macrocysts. Here we performed the targeting of 24 highly gamete-enriched genes we previously isolated, and successfully generated knockout mutants for 16 genes and RNAi mutants for 20 genes including 6 genes without disruptants. In the knockout mutants of two genes, cell aggregation toward the giant cells was much less extensive and many cells remained around poorly formed macrocysts. We named these genes tmcB and tmcC. Although macrocyst formation of wild type cells was suppressed by the addition of exogenous cAMP, that of knockout mutants of tmcB was much less sensitive. The mRNA level of phosphodiesterase (pde) was higher and that of its inhibitor (pdi) was lower in the latter cells compared to the parental strains during sexual development. Thus, tmcB appeared to be a novel regulator of the cAMP signaling pathway specific to sexual development. Knockout mutants of tmcC were indistinguishable from the wild type cells with respect to the cAMP response, suggesting that this gene is relevant to other processes.  相似文献   

16.
Zygospore formation in different strains of the Closterium peracerosum-strigosum-littorale complex was examined in this unicellular isogamous charophycean alga to shed light on gametic mating strains in this taxon, which is believed to share a close phylogenetic relationship with land plants. Zygospores typically form as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt) cells during sexual reproduction in the heterothallic strain, similar to Chlamydomonas. However, within clonal cells, zygospores are formed within homothallic strains, and the majority of these zygospores originate as a result of conjugation of two recently divided sister gametangial cells derived from one vegetative cell. In this study, we analyzed conjugation of homothallic cells in the presence of phylogenetically closely related heterothallic cells to characterize the reproductive function of homothallic sister gametangial cells. The relative ratio of non-sister zygospores to sister zygospores increased in the presence of heterothallic mt+ cells, compared with that in the homothallic strain alone and in a coculture with mt cells. Heterothallic cells were surface labeled with calcofluor white, permitting fusions with homothallic cells to be identified and confirming the formation of hybrid zygospores between the homothallic cells and heterothallic mt+ cells. These results show that at least some of the homothallic gametangial cells possess heterothallic mt-like characters. This finding supports speculation that division of one vegetative cell into two sister gametangial cells is a segregative process capable of producing complementary mating types.  相似文献   

17.
Cells of Dictyostelium discoideum become sexually mature under submerged and dark conditions, and fuse with opposite mating-type cells to form zygote giant cells, which gather surrounding cells and finally develop into dormant structures called macrocysts. In the present study, we found that the multinuclear fused cells formed during this process frequently underwent cytokinesis driven by random local movements. The split cells were capable of re-fusion, and repeated cytokinesis. These radical behaviors continued until the extensive cell aggregation started around the giant cells. Thus, gamete fusion and initiation of zygote development do not coincide in the mating of D. discoideum. Analyses by confocal microscopy and flow cytometry indicated that the cessation of the random movement followed pronuclear fusion, and that microtubule organizing centers (MTOC), abundant in the fused cells at the beginning, gradually decreased and only one of them remained within the developed macrocyst. Some of the genes known to control cell movement, such as rasGEFB and rasS, increased shortly before the cessation of repeated fusion-cytokinesis and initiation of phagocytosis. These results suggest that the sequential molecular events are necessary in D. discoideum after gamete fusion to establish a new individuality of zygotes.  相似文献   

18.
Members of the Closterium peracerosum–strigosum–littorale (C. psl.) complex are unicellular charophycean algae in which there are two modes of zygospore formation, heterothallic and homothallic. A homothallic strain of Closterium (designation, kodama20) was isolated from a Japanese rice paddy field. Based on alignment of the 1506 group‐I introns, which interrupt nuclear SSU rDNAs, homothallic kodama20 is most closely related to the heterothallic mating group II‐B, which is partially sexually isolated from group II‐A. Time‐lapse photography of the conjugation process in kodama20 revealed that most of the observed zygospores originated from one vegetative cell. The sexual conjugation process consisted of five stages: (1) cell division resulting in the formation of two sister gametangial cells from one vegetative cell, (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another adjoined individual), (3) formation of conjugation papillae, (4) release of gametic protoplasts from both members of a pair, and (5) formation of the zygospore by protoplast fusion. For conjugation to progress, the cell density and light condition in the culture was critical. We suggested the presence of a conjugation promotion factor.  相似文献   

19.
Sex in fungi is driven by peptide pheromones sensed through seven‐transmembrane pheromone receptors. In Cryptococcus neoformans, sexual reproduction occurs through an outcrossing/heterothallic a ‐ sexual cycle or an inbreeding/homothallic – unisexual mating process. Pheromone receptors encoded by the mating‐type locus ( MAT ) mediate reciprocal pheromone sensing during opposite‐sex mating and contribute to but are not essential for unisexual mating. A pheromone receptor‐like gene, CPR2 , was discovered that is not encoded by MAT and whose expression is induced during a ‐ mating. cpr2 mutants are fertile but have a fusion defect and produce abnormal hyphal structures, whereas CPR2 overexpression elicits unisexual reproduction. When heterologously expressed in Saccharomyces cerevisiae , Cpr2 activates pheromone responses in the absence of any ligand. This constitutive activity results from an unconventional residue, Leu222, in place of a conserved proline in transmembrane domain six; a Cpr2L222P mutant is no longer constitutively active. Cpr2 engages the same G‐protein activated signalling cascade as the Ste3 a /α pheromone receptors, and thereby competes for pathway activation. This study established a new paradigm in which a naturally occurring constitutively active G protein‐coupled receptor governs morphogenesis in fungi.  相似文献   

20.
Sexual development in Dictyostelium discoideum has many unique features making it an attractive eukaryotic model system for the study of biomembrane fusion and intercellular communication. The work presented here provides primary biochemical evidence for two distinct phases during early sexual development that appear to be defined by calcium-dependent gamete cell fusion. In addition, we introduce a novel procedure for the enrichment of zygote giant cells and use this method to define certain wheat-germ agglutinin binding glycoproteins which are specifically located in zygote giant cells and others which are markers for surrounding amoebae in the second phase of development. In addition, a G protein which is present in high amounts early in development is unique to giant cells in the second phase, suggesting a role in phagocytosis. Finally, alkaline phosphatase activity was found to mark the first phase of sexual development, suggesting a role in cell fusion. This contrasts with the patterns of alpha-mannosidase and beta-glucosidase activity that increase late in the second developmental phase, where they likely function in endocyte digestion during the cytophagic period. The developmental significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号