首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is deseribed for the extraction and determination of chlorophylls a and b. The method is suitable for use with both normal and regreening nitrogen-deficient Chlorella fusca. The assay involves extraction of chlorophylls by an alkaline pyridine reagent which converts the isocyclic ring of the pigment to a cyclic hydroxylactone. Millimolar extinetion coefficients for the hydroxylactone derivatives of both chlorophylls a and b have been determined at 419 and 454 nm. Using these coefficients, equations have been derived for the calculation of chlorophyll a and b concentrations. The new chlorophyll assay has been compared with other assays which involve the extraction of the pigments with 80% acetone or methanol. The new procedure extracts chlorophylls from rormally grown C. fusca more readily than methanol; the chlorophylls of normal Chlorella cannot be extracted with 80% acetone. The new assay is especially useful in the study of chlorophyll synthesis in regreening nitrogen-deficient C. fusca since the chlorophylls present in these deficient cells cannot be completely extracted with acetone, methanol, methanol-dimethylsulphoxide mixtures, or KOH-methanol.  相似文献   

2.
《Plant Science Letters》1980,17(2):149-157
Three main chlorophyll-protein complexes have been resolved by gel electrophoresis from a marine green alga, Caulerpa cactoides, which has a low chlorophyll a/chorophyll b ratio of 1.62. Of the 6 chlorophyll-protein complexes resolved, two are chlorophyll a-proteins related to the reaction centre complex of photosystem 1, one is the chlorophyll a-protein of the presumed reaction centre complex of photosystem 2, and three are chlorophyll a/b-proteins of the light-harvesting complex. Some 61% of the total chlorophyll was associated with the light-harvesting complex and 23% and 6% with the reaction centre complexes of photosystems 1 and 2, respectively. In contrast to the light-harvesting complexes of higher plants which have equimolar amounts of chlorophylls a and b, the light-harvesting complex of Caulerpa has 1.45 times as much chlorophyll b as chlorophyll a. Variations in the pigment contents of the photosynthetic units of chlorophyll b-containing plants are reflected not only in varying amounts of total chlorophyll associated with each of the three main chlorophyll-protein complexes, but also in the stoichiometric amounts of chlorophyll a and chlorophyll b present in the light-harvesting complexes.  相似文献   

3.
4.
Tanaka A  Tsuji H 《Plant physiology》1981,68(3):567-570
Cucumber seedlings were illuminated for various time periods, cotyledons excised, placed in the dark, and changes in chlorophyll a and b content monitored. During the dark periods, chlorophyll b content decreased while chlorophyll a did not. When the illumination time was lengthened, the percentage of chlorophyll b decomposition from initial levels decreased. Ca2+ at 50 millimolar prevented the decrease in chlorophyll b and caused a decrease in chlorophyll a. The effect of Ca2+ decreased with increased illumination time. Cycloheximide and chloramphenicol inhibited chlorophyll b decrease, but did not induce chlorophyll a decrease.  相似文献   

5.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

6.
Spectral characterization of five chlorophyll-protein complexes   总被引:5,自引:5,他引:0       下载免费PDF全文
Sodium dodecyl sulfate-solubilized chloroplast internal membranes of higher plants (cowpea [Vigna unguiculata L. Walp], chinese cabbage [Brassica chinensi L.], and tobacco [Nicotiana tabacum L.]) are resolved by polyacrylamide gel electrophoresis into two chlorophyll a- and three chlorophyll a,b-proteins. A small portion (about 15%) of the membrane chlorophyll migrates as a component of high electrophoretic mobility and presumably consists of detergent-complexed, protein-free pigment.

One of the chlorophyll a-proteins is qualitatively similar to the P700 chlorophyll a-protein but contains a much larger proportion of total chlorophyll (about 30%) than previously reported. The second chlorophyll a-protein is a recently discovered component of the membrane and accounts for about 7% of the total chlorophyll. The absorption and fluorescence emission spectra of these two chlorophyll a-proteins differ.

The three chlorophyll a,b-proteins are components of the chloroplast membrane chlorophyll a,b-light-harvesting complex which was previously resolved as a single chlorophyll-protein band. The two additional chlorophyll a,b-proteins observed in our work probably represent larger aggregates contained within that membrane complex which are preserved under the solubilization and electrophoretic conditions used here.

  相似文献   

7.
Naoki Sato  Norio Murata 《BBA》1978,501(1):103-111
Chlorophyll a, chlorophyll b and bacteriochlorophyll a were prepared by means of column chromatography with Sephadex LH-20 and diethylaminoethylcellulose. This method provides purified preparations of chlorophylls in about 3 h.To prepare chlorophyll a, blue-green or red algae were used as the starting material. Chlorophyll a was extracted with 90% aqueous acetone from cells of blue-green algae, Anabaena variabilis, Anacystis nidulans and Tolypothrix tenuis, and with 90% aqueous methanol from thalli of a red alga, Porphyra yezoensis. Chlorophyll a was collected as precipitates by adding dioxane and water to the extract according to the method of Iriyama et al. [6]. The crude chlorophyll a preparation was applied to a Sephadex LH-20 column with chloroform as the eluent and then to a DEAE-cellulose column with a chloroform/methanol mixture (49 : 1, v/v) as the eluent. Analysis with thin layer chromatography revealed that the chlorophyll a preparation contained no detectable contaminants.Bacteriochlorophyll a was prepared in a similar manner from purple photosynthetic bacteria, Rhodopseudomonas spheroides and Chromatium vinosum.In order to prepare chlorophyll b, chloroplasts of spinach leaves were used as the starting material. A mixture of chlorophylls a and b was obtained in the same way as described for the preparation of chlorophyll a from the blue-green algae. To separate chlorophyll b from chlorophyll a, the mixture was applied to a diethylaminoethylcellulose column which was developed with a hexane/2-propanol mixture (5 : 2, v/v).  相似文献   

8.
The chlorophyll content is an important experimental parameter in agronomy and plant biology research. In this report, we explore the feasibility of determining total concentration of extracts containing chlorophyll a and chlorophyll b by chlorophyll fluorescence. We found that an excitation at 457?nm results in the same integrated fluorescence emission for a molecule of chlorophyll a and a molecule of chlorophyll b. The fluorescence yield induced by 457?nm is therefore proportional to total molar chlorophyll concentration. Based on this observation, we designed an instrument to determine total chlorophyll concentrations. A single light emitting diode (LED) is used to excite chlorophyll extracts. After passing through a long-pass filter, the fluorescence emission is assessed by a photodiode. We demonstrate that this instrument facilitates the determination of total chlorophyll concentrations. We further extended the functionality of the instrument by including LEDs emitting at 435 and 470?nm wavelengths, thereby preferentially exciting chlorophyll a and chlorophyll b. This instrument can be used to determine chlorophyll a and chlorophyll b concentrations in a variety of organisms containing different ratios of chlorophylls. Monte-Carlo simulations are in agreement with experimental data such that a precise determination of chlorophyll concentrations in carotenoid-containing biological samples containing a concentration of less than 5?nmol/mL total chlorophyll can be achieved.  相似文献   

9.
The effects of cadmium (Cd) supply level in nutrient solution (0, 12.5, 25, 50, 100, 200, 400, and 800 μM) on growth, Cd accumulation ability, and the related physiological indices of maize (Zea mays L.) seedlings were studied under hydroponic conditions. The results showed that the increments in the shoot height and biomass were stimulated at relatively low external Cd supply levels (<100 μM), while they were inhibited at Cd supply levels over 200 μM. Cd accumulation ability of the maize seedlings also showed the similar stimulation/inhibition pattern as shoot growth, and the Cd contents in the shoots and roots reached the peaks (389.5 and 505.5 mg/kg dry wt, respectively) at 50 μM Cd. The contents of chlorophyll a, chlorophyll b, and carotenoids in the maize leaf blades decreased with increasing external Cd supply level. At the highest Cd supply level (800 μM), the contents of chlorophyll a, chlorophyll b, and carotenoids in the leaf blade were only 38.9, 46.0, and 29.7% of the control plants, respectively. Moreover, chlorophyll b was more sensitive to the Cd stress than chlorophyll a. The increased proline content in the leaf blade of maize seedlings resulted from external Cd stress indicates that maize can adapt to the adversity menace via changing the content of proline.  相似文献   

10.
Reversed-phase high-performance liquid chromatography with octadecyl- or octylsilylated silica gel as the stationary phase provides a powerful tool in the analysis of chloroplast pigments from higher plants and green algae. Chromatographic columns packed with 10 μm chemically bonded silica gel particles allow the simultaneous separation of chlorophylls a and b, chlorophyll isomers, pheophytins a and b, α-carotene, β-carotene, lutein, violaxanthin, lutein-5,6-epoxide, antheraxanthin, neoxanthin and several minor carotenoids from a single sample within a short analysis time. The quantitative analysis requires a minimum of 1–5 pmol for carotenoids and 5–10 pmol for chlorophylls. Pigment degradation products, formed on polar stationary phases, are not found in reversed-phase high-performance liquid chromatography due to the weak hydrophobic forces on which the separation mechanism is based. The production of altered pigments however, either induced by various treatments or generated during the isolation, can be monitored as the reversed-phase system is selective enough to separate cis-isomers and oxidation products from their parent compounds. The reproducibility of the individual retention time for each pigment is better than ±1.5% which facilitates the identification of unknown pigments. The method is applied to the analysis of the pigment composition of Chlorella fusca, spinach (Spinacia oleracea) chloroplasts, and to the rapid determination of the ratio of chlorophyll a to chlorophyll b.  相似文献   

11.
Chlorophyllide b and four chemically different chlorophyll b specieis, chlorophyllide b esterified with geranylgeraniol, dihydrogeranylgeraniol, tetrahydrogeranylgeraniol and phytol have been detected in addition to the same derivatives of chlorophyll a in the greening cotyledons of cucumber. These esters could be separated and determined by high-performance liquid chromatography. The results suggest that chlorophyll b phytol is formed from the esterification of chlorophyllide b and geranylgeraniol followed by three hydrogenations of the alcohol moiety, as in the case of chlorophyll a and protochlorophyll phytol formation  相似文献   

12.
With the use of low temperature spectrofluorometry and matrix calculations it was demonstrated that the chlorophyll a pool of higher plants is made up of four different chlorophyll a chromophores. The latter were segregated by high pressure liquid chromatography on a silica column. They were designated Chl a (E432 F664), Chl a (E436 F670), Chl a (E443 F672) and Chl a (E446 F674), where E refers to the Soret excitation maximum and F to the fluorescence emission maximum at 77 K in ether. Likewise the Chl b pool was shown to consist of at least four different Chl b chromophores which were designated: Chl b (E465), Chl b (E470), Chl b (E475) and Chl b (E485). It was proposed that the various chlorophyll chromophores differed by the degree of oxidation of their side chains at the 2 and 4 positions of the macrocycle. It was also suggested that the chemical modifications at the 2 and 4 positions of the macrocycle may play an important role in positioning the different chlorophyll chromophores in the thylakoid membranes.  相似文献   

13.
Peroxidase-catalysed oxidation of chlorophyll by hydrogen peroxide   总被引:2,自引:0,他引:2  
Albert Huff 《Phytochemistry》1982,21(2):261-265
Chlorophyll is effectively bleached by H2O2 in the presence of certain phenols and peroxidase (EC 1.11.1.7) extracted from acetone powders of orange flavedo (Citrus sinensis). Optimal conditions for chlorophyll: hydrogen peroxide oxidoreductase include: pH, 5.9; [H2O2] 222 μM; ionic strength 0.11. A phenol is required and resorcinol is the most effective. Catechol and hydroquinone are inhibitory. Chlorophyll a, chlorophyllide a, and chlorophyll b all have similar Vmax but Km for chlorophyll a is about one-third that of chlorophyll b, while the Km for chlorophyllide a is about one-half that of chlorophyll a. Pheophytin a was much less reactive than chlorophyll a, and Mg2+ included in the reaction system did not affect rates of pheophytin destruction.  相似文献   

14.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

15.
Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ~1.9, ~1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.  相似文献   

16.
The antenna composition of the Photosystems IIα, IIβ and I was studied in tobacco chloroplasts. Absorbance spectra, recorded at 4 K, were analyzed for the wild type and the mutants Su/su and Su/su var. Aurea, containing higher concentrations of the photosystems. With chloroplasts of Su/su we measured the action spectra of the three photosystems from 625 to 690 nm. Above 675 nm absorption by Photosystem I dominated. This sytem had a maximum at 678 nm and a shoulder at 660 nm. Of the long-wavelength chlorophyll a forms, absorbing at 690, 697 and 705 nm at 4 K, which are generally assigned to Photosystem I, the 697 nm form occurred in an amount of four molecules per reaction center of Photosystem I in each type of chloroplast. The Photosystem IIα spectrum was characterized by maxima at 650 and 672 nm, showing clearly the participation of the chlorophyll a and b containing light-harvesting complex. In the mutants the light-harvesting complex has a chlorophyll a to chlorophyll b ratio of more than 1; the amount of the 672 nm chlorophyll a was normal, whereas the amount of chlorophyll b was markedly decreased in the mutants relative to the wild type. The Photosystem IIβ spectrum mainly consisted of a band at 683 nm.  相似文献   

17.
Methyl linoleate containing chlorophylls and/or pheophytins was exposed to light in the presence of oxygen. The photooxidative reaction of both chlorophylls a and b was first-order, and the reaction rate for chlorophyll a was higher than that for chlorophyll b. On the other hand, pheophytins a and b hardly decomposed even after irradiation for 24 hr, and retained a green or a brownish-green color. In qualitative analysis of the photooxidation products of chlorophylls a and b, no pheophytins or pheophorbides were detected, while green and polar red pigments were observed on a thin layer chromatogram near the spot of chlorophyll and the origin, respectively. These photooxidation compounds also had prooxidant effects as well as did chlorophyll.  相似文献   

18.
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 ± 5 ps (Chlb-Chld) and 59 ± 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.  相似文献   

19.
A photosystem two (PSII) core complex consisting of five major polypeptides (47, 40, 32, 30, and 10 kilodaltons) and a light harvesting chlorophyll a/b complex (LHC-2) have been isolated from the halotolerant alga Dunaliella salina. The chlorophyll and polypeptide composition of both complexes were compared in illuminated and dark-adapted cultures. Dark adaptation is accompanied by a decrease in the chlorophyll a to chlorophyll b (Chl a/Chl b) ratio of intact thylakoids without any change in total chlorophyll. These changes occur with a half-time of 3 hours and are reversed upon reillumination. Analyses of PSII enriched membrane fragments suggest that the decrease in the Chl a/Chl b is due partly to an increase in the Chl b content of LHC-2 and partly to changes in the relative levels of the two complexes. Apparently during dark adaptation there is: (a) a net synthesis of chlorophyll b, (b) removal of PSII core complexes resulting in a 2-fold drop in the PSII cores to LHC-2 chlorophyll ratio. These changes should dramatically increase the light harvesting capacity of the remaining PSII reaction centers. Presumably this adjustment of antenna size and composition is a physiological mechanism necessary for responding to shade conditions. Also detected, using 32P, are light-induced phosphorylation of the LHC-2 (consistent with the ability to undergo State transitions) and of the 40 and 30 kilodalton subunits of the PSII core complex. These observations indicate that additional mechanisms may also exist to help optimize the interception of quanta during rapid changes in illumination conditions.  相似文献   

20.
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called “prochlorophytes”) that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号