首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease A has been trinitrophenylated to varying degrees by reaction with trinitrobenzenesulfonic acid. The reactive amino groups were identified by use of the peptides obtained from the oxidized TNP-RNase by tryptic and chymotryptic hydrolysis. From a quantitative study of the TNP-peptides it was possible to associate each amino group with values of pKma. It was shown that the lys-41 amino group had a pKa of 9.03 in TEA buffer. The pKa values of all of the other amino groups were dependent on the nature of the buffer (triethanolamine and phosphate) and on the pH.  相似文献   

2.
Co-operativity in seminal ribonuclease function. Kinetic studies.   总被引:6,自引:0,他引:6       下载免费PDF全文
Maltose-maleimide was synthesized as a potential affinity label for the facilitative hexose carrier with selectivity for exofacial sulphydryl groups. This reagent, although probably a mixture of isomers, did not significantly penetrate the plasma membrane of human erythrocytes at concentrations below 5 mM at 37 degrees C. When allowed to react to completion, it irreversibly inhibited the uptake of 3-O-methylglucose, with a half-maximal response at about 1.5-2.0 mM-reagent. The rate of transport inactivation was a saturable function of the maltose-maleimide concentration. Studies of reaction kinetics and effects of known transport inhibitors demonstrated that irreversible reaction occurred on the exofacial outward-facing carrier, although not at a site involved in substrate binding. Reaction of intact erythrocytes with [14C]maltose-maleimide resulted in labelling of a broad band 4.5 protein of Mr (average) 45,000-66,000 in electrophoretic gels. This protein was very likely the hexose carrier, since its labelling was inhibited by cytochalasin B. Exofacial band 4.5 labelling was stoichiometric with respect to transport inhibition, yielding an estimated 300,000 carriers/cell. These results suggest that the exofacial sulphydryl which reacts with maltose-maleimide is distinct from the substrate binding site on the hexose carrier, but that it confers substantial labelling selectivity to impermeant maleimides. Additionally, the high efficiency of carrier labelling obtained with maltose-maleimide is useful in quantifying numbers of carriers in whole cells.  相似文献   

3.
Studies were conducted on the depolymerization of polyadenylic acid (poly (A)) by RNAse A (EC 3.1.4.22) depending on the pH (pH 5-8). The results showed that depending on the pH, the ratio Vmax/Km was analogous to that described earlier for nucleoside-2', 3'-cyclophosphates and dinucleoside phosphates. This indicates that depolymerization of poly (A), transesterification and hydrolysis of specific substrates is achieved by the same ionizing groups of the enzyme with pKa 5.4 and pKb 6.4. The rate of degradation of poly (A) is also influenced by the state of adenine ionization, the protonation of which leads to the formation of a double helical poly (A), and does not serve as a substrate for RNAse A. The low rate for the depolymerization of poly (A) in the presence of RNAse A is related to a decrease in the turnover number of the enzyme, and an increase in the molecular weight of the enzyme (RNAse dimer), leads to a decrease in the Km, and does not effect Vmax. This indicates that the rate of depolymerization of polynucleotides is determined by orientation of factors. On the basis of the comparison of the resultant kinetic data, and the structure of the enzyme inhibitory complexes of RNAse S, which were studied by the method of x-ray structural analysis, a conclusion was reached on the kinetic characteristics of RNAse A specificity with respect to polymeric substrates, which is determined by the orinetation of the ribose phosphate relative to the catalytic groups of the active site.  相似文献   

4.
5.
A study has been made of the effect of ribonuclease (RNAse) concentration on the properties of the amino groups. The biphasic dependence of pK on pH which has been established (Goldfarb and Martin, Bioorg. Chem.5, 137 (1976)). for 5 μM solution of RNAse also have been shown to occur for 50 μM solutions. In the lower pH range (7.5–8.5) the values of pK obtained with 50 μM solutions were similar to those obtained with 5 μM solutions (pK = 7.5) but the intrinsic constants were smaller. In the higher pH range (8.5–10) the pKs in the more concentrated solutions were larger than those found at the smaller concentration and the intrinsic constants were generally smaller. A quantitative study of the concentration vs ki relation at pH 7.5 indicated a sigmoid relationship for all of the subsets with a constant maximum value equal to, and less than that at 5 μM RNAse and a constant minimum value above that at 20 μM. Parallel studies with oxidized RNAse gave parallel, although not identical, results from which it is proposed that the concentration effect does not arise totally from the three-dimensional structure of native RNAse.  相似文献   

6.
7.
8.
The amino groups of insulin have been studied by 1H and 13C nuclear magnetic resonance spectroscopy in insulin, zinc-free insulin and methylated insulin. By difference spectroscopy it is possible to follow the shift with pH of the epsilon-CH2 and delta-CH2 proton resonances of lysine-B29 in insulin. In methylated insulin the dimethyl proton resonances of glycine-A1, phenylalanine-B1 and lysine-B29 can be followed as a function of pH. In native insulin pKapp values of 6.7 and 8.0 are obtained for phenylalanine-B1 and glycine-A1 (the assignment is tentative) and 11.2 for lysine-B29. Separate resonances have been observed from the lysine-B29 Nepsilon-(CH3)2 group for the monomeric and dimeric forms of methylated insulin, which indicates a small change in the environment of lysine-B29 on dimerisation. The nuclear magnetic resonance spectral characteristics of these groups are, in general, consistent with the overall structure of the crystal form of the 2-zinc insulin hexamer.  相似文献   

9.
The rates of the trinitrophenylation of the amino groups of ribonuclease A (RNAse) with the specific reagent trinitrobenzene sulfonic acid have been studied at 27°C, between pH 7.0 and 9.9. From the variation of the velocity constants with pH it has been shown that the reaction is biphasic in the sense that for each amino group two pKs have been found: one (pK = 7.3–7.52) in the range of pH between 7.0 and 8.3 and the other (pK = 9.28–9.69) in the pH range 8.5–9.9. It is pointed out that when the experimental conditions approached one another, there was agreement between the pK values obtained from titrimetric and kinetic studies. Evidence is presented from the literature concerning the validity of the pK value near 7.5 for the ε-amino groups in RNAse. The studies were repeated with performic acid oxidized RNAse and the 10 ε-amino groups were found to be monophasic with pK values between 8.01 and 8.10. The α-amino group of the N-terminal lysine was biphasic with a pK of 7.26 (pH range 7–8) and 8.13 (pH range 8.2–9.5).  相似文献   

10.
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. Previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNase S and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model. According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.  相似文献   

11.
12.
In the pH range of 6 to 8, the proton transfer reactions of BSA were measured using the temperature jump relaxation technique. The rate data were compared to the results using imidazole itself to establish that the observed reactions were those of the imidazole groups in the BSA. Upon the addition of calcium and gadolinium to the BSA solutions, no metal ion complexation was observed for either cation at the imidazole sites.  相似文献   

13.
14.
Heterogeneity of amino groups in proteins. I. Human serum albumin   总被引:2,自引:0,他引:2  
A R Goldfarb 《Biochemistry》1966,5(8):2574-2578
  相似文献   

15.
16.
17.
Kinetic parameters, Km and Vmax for the transesterification of oligouridylic acid, (Up)nU greater than p (n=0-4), by RNase A were measured spectrophotometrically at pH 7.0 and 25 degrees C. The kinetic parameters, pKm and log Vmax increased with increase in the chain length (n), and seemed to be almost constant with substrates having n greater than or equal to 2. The contribution of each subsite to the binding was estimated according to Hiromi's theory. The subsite affinities for (B1, R1, P1)+(B2, R2, P2) and (B3, R3, P3) are 8.03 kcal and 0.72 kcal/mol, respectively, and those for (B4, R4, P4) and (B5, R5, P5) are less than 0.5 kcal/mol. Therefore, we postulate that the size of the RNase A active site is about 3 nucleotides in length. Transesterification of poly U by RNase A was followed spectrophotometrically. The reaction is markedly influenced by ionic strength. At lower ionic strength, the v0-S curve of poly U cleavage was sigmoidal and cooperative, and it became less cooperative at higher ionic strength. Since the estimated Vmax value for poly U cleavage at ionic strength of 0.1 was more than 20 times larger than that of oligouridylic acids cleavage, we propose a non-specific interaction of poly U anion with cationic groups on the surface of the enzyme, modulating the conformation of active site, and thus increasing the activity at low ionic strength. The interaction decreases at higher ionic strength due to the interaction of counter anions with the non-specific sites.  相似文献   

18.
Kinetic constants for the transesterification of eight dinucleoside phosphates CpX and UpX by bovine and turtle pancreatic ribonuclease were determined. Both ribonucleases have a preference for purine nucleotides at the position X. However, bovine ribonuclease, like other mammalian ribonucleases, prefers 6-amino bases at this site, while turtle ribonuclease prefers 6-keto bases. This difference in specificity at the B2 site may be explained by the substitution of glutamic acid at position 111 by valine in turtle ribonuclease. These results have been confirmed by inhibition studies with the four nucleoside triphosphates. Inhibition studies with pT and pTp showed that a cationic binding group (P0) for the 5'-phosphate of the pyrimidine nucleotides bound at the primary B1 site is present in turtle ribonuclease, although lysine at position 66 in bovine ribonuclease is absent in turtle ribonuclease. However, the side chain of lysine 122 in turtle ribonuclease is probably located in the correct position to take over the role as cationic P0 site.  相似文献   

19.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号