首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
The study of male genital diversity has long overshadowed evolutionary inquiry of female genitalia, despite its nontrivial diversity. Here, we identify four nonmutually exclusive mechanisms that could lead to genital divergence in females, and potentially generate patterns of correlated male–female genital evolution: (1) ecological variation alters the context of sexual selection (“ecology hypothesis”), (2) sexually antagonistic selection (“sexual‐conflict hypothesis”), (3) female preferences for male genitalia mediated by female genital traits (“female‐choice hypothesis”), and (4) selection against inter‐population mating (“lock‐and‐key hypothesis”). We performed an empirical investigation of all four hypotheses using the model system of Bahamas mosquitofish inhabiting blue holes that vary in predation risk. We found unequivocal support for the ecology hypothesis, with females exhibiting a smaller genital opening in blue holes containing piscivorous fish. This is consistent with stronger postmating female choice/conflict when predators are present, but greater premating female choice in their absence. Our results additionally supported the lock‐and‐key hypothesis, uncovering a pattern of reproductive character displacement for genital shape. We found no support for the sexual conflict or female choice hypotheses. Our results demonstrate a strong role for ecology in generating female genital diversity, and suggest that lock‐and‐key may provide a viable cause of female genital diversification.  相似文献   

2.
Female genitalia have been largely neglected in studies of genital evolution, perhaps due to the long‐standing belief that they are relatively invariable and therefore taxonomically and evolutionarily uninformative in comparison with male genitalia. Contemporary studies of genital evolution have begun to dispute this view, and to demonstrate that female genitalia can be highly diverse and covary with the genitalia of males. Here, we examine evidence for three mechanisms of genital evolution in females: species isolating ‘lock‐and‐key’ evolution, cryptic female choice and sexual conflict. Lock‐and‐key genital evolution has been thought to be relatively unimportant; however, we present cases that show how species isolation may well play a role in the evolution of female genitalia. Much support for female genital evolution via sexual conflict comes from studies of both invertebrate and vertebrate species; however, the effects of sexual conflict can be difficult to distinguish from models of cryptic female choice that focus on putative benefits of choice for females. We offer potential solutions to alleviate this issue. Finally, we offer directions for future studies in order to expand and refine our knowledge surrounding female genital evolution.  相似文献   

3.
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

4.
Natural selection and post‐copulatory sexual selection, including sexual conflict, contribute to genital diversification. Fundamental first steps in understanding how these processes shape the evolution of specific genital traits are to determine their function experimentally and to understand the interactions between female and male genitalia during copulation. Our experimental manipulations of male and female genitalia in red‐sided garter snakes (Thamnophis sirtalis parietalis) reveal that copulation duration and copulatory plug deposition, as well as total and oviductal/vaginal sperm counts, are influenced by the interaction between male and female genital traits and female behaviour during copulation. By mating females with anesthetized cloacae to males with spine‐ablated hemipenes using a fully factorial design, we identified significant female–male copulatory trait interactions and found that females prevent sperm from entering their oviducts by contracting their vaginal pouch. Furthermore, these muscular contractions limit copulatory plug size, whereas the basal spine of the male hemipene aids in sperm and plug transfer. Our results are consistent with a role of sexual conflict in mating interactions and highlight the evolutionary importance of female resistance to reproductive outcomes.  相似文献   

5.
Despite the key functions of the genitalia in sexual interactions and fertilization, the role of sexual selection and conflict in shaping genital traits remains poorly understood. Seed beetle (Callosobruchus maculatus) males possess spines on the intromittent organ, and females possess a thickened reproductive tract wall that also bears spines. We investigated the role of sexual selection and conflict by imposing monogamous mating on eight replicate populations of this naturally polygamous insect, while maintaining eight other populations under polygamy. To establish whether responses to mating system manipulation were robust to ecological context, we simultaneously manipulated life-history selection (early/late reproduction). Over 18-21 generations, male genital spines evolved relatively reduced length in large males (i.e., shallower static allometry) in monogamous populations. Two nonintromittent male genital appendages also evolved in response to the interaction of mating system and ecology. In contrast, no detectable evolution occurred in female genitalia, consistent with the expectation of a delayed response in defensive traits. Our results support a sexually antagonistic role for the male genital spines, and demonstrate the evolution of static allometry in response to variation in sexual selection opportunity. We argue that further advances in the study of genital coevolution will require a much more detailed understanding of the functions of male and female genital traits.  相似文献   

6.
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.  相似文献   

7.
Genital coevolution is a pervasive phenomenon as changes in one sex tend to impose fitness consequences on the other, generating sexual conflict. Sexual conflict is often thought to cause stronger selection on males due to the Darwin–Bateman's anisogamy paradigm. However, recent studies have demonstrated that female genitalia may be equally elaborated and perform diverse extra‐copulatory functions. These characteristics suggest that female genitals can also be primary targets of selection, especially where natural selection acts on female‐exclusive functions such as oviposition. Here, we test this hypothesis in a statistical phylogenetic framework across the whole beetle (Coleoptera) phylogeny, investigating whether coevolution of specific genital traits may be triggered by changes in females. We focus on traits of the proctiger, which composes part of the male terminalia and the female ovipositor. Our results present a comprehensive case of male–female genital coevolution and provide solid statistical evidence for a female‐initiated coevolutionary process where the vast majority of evolutionary transitions in males have occurred only after changes in females. We corroborate the hypothesis that female traits may change independently and elicit counter‐adaptations in males. Furthermore, by showing a consistent pattern across the phylogeny of the most diverse group of animals, our results suggest that this female‐driven dynamics may persist through long time scales.  相似文献   

8.
The evolutionary significance of widespread hypo‐allometric scaling of genital traits in combination with rapid interspecific genital trait divergence has been of key interest to evolutionary biologists for many years and remains poorly understood. Here, we provide a detailed assessment of quantitative genital trait variation in males and females of the sexually highly dimorphic and cannibalistic orb‐weaving spider Argiope aurantia. We then test how this trait variation relates to sperm transfer success. In particular, we test specific predictions of the one‐size‐fits‐all and lock‐and‐key hypotheses for the evolution of genital characters. We use video‐taped staged matings in a controlled environment with subsequent morphological microdissections and sperm count analyses. We find little support for the prediction of the one‐size‐fits‐all hypothesis for the evolution of hypo‐allometric scaling of genital traits, namely that intermediate trait dimensions confer highest sperm transfer success. Likewise, our findings do not support the prediction of the lock‐and‐key hypothesis that a tight fit of male and female genital traits mediates highest sperm transfer success. We do, however, detect directional effects of a number of male and female genital characters on sperm transfer, suggesting that genital trait dimensions are commonly under selection in nature. Importantly, even though females are much larger than males, spermatheca size limits the number of sperm transferred, contradicting a previous hypothesis about the evolutionary consequences of genital size dimorphism in extremely size‐dimorphic taxa. We also find strong positive effects of male body size and copulation duration on the probability of sperm transfer and the number of sperm transferred, with implications for the evolution of extreme sexual size dimorphism and sexual cannibalism in orb weavers.  相似文献   

9.
Conflicts of interests between males and females over reproduction is a universal feature of sexually reproducing organisms and has driven the evolution of intersexual mimicry, mating behaviours and reproductive polymorphisms. Here, we show how temperature drives pre‐reproductive selection in a female colour polymorphic insect that is subject to strong sexual conflict. These species have three female colour morphs, one of which is a male mimic. This polymorphism is maintained by frequency‐dependent sexual conflict caused by male mating harassment. The frequency of female morphs varies geographically, with higher frequency of the male mimic at higher latitudes. We show that differential temperature sensitivity of the female morphs and faster sexual maturation of the male mimic increases the frequency of this morph in the north. These results suggest that sexual conflict during the adult stage is shaped by abiotic factors and frequency‐independent pre‐reproductive selection that operate earlier during ontogeny of these female morphs.  相似文献   

10.
Recent theoretical and empirical interest in postmating processes have generated a need for increasing our understanding of the sources of variance in fertilization success among males. Of particular importance is whether such postmating sexual selection merely reinforces the effects of premating sexual selection or whether other types of male traits are involved. In the current study, we document large intraspecific variation in last male sperm precedence in the water strider Gerris lateralis. Male relative paternity success was repeatable across replicate females, showing that males differ consistently in their ability to achieve fertilizations. By analyzing shape variation in male genital morphology, we were able to demonstrate that the shape of male intromittent genitalia was related to relative paternity success. This is the first direct experimental support for the suggestion that male genitalia evolve by postmating sexual selection. A detailed analysis revealed that different components of male genitalia had different effects, some affecting male ability to achieve sperm precedence and others affecting male ability to avoid sperm precedence by subsequent males. Further, the effects of the shape of the male genitalia on paternity success was in part dependent on female morphology, suggesting that selection on male genitalia will depend on the frequency distribution of female phenotypes. We failed to find any effects of other morphological traits, such as male body size or the degree of asymmetry in leg length, on fertilization success. Although males differed consistently in their copulatory behavior, copulation duration was the only behavioral trait that had any significant effect on paternity.  相似文献   

11.
Typically, sexually selected traits show positive allometry and high coefficients of variation (CV). To date, many studies on the allometry of genitalia have focused on insects. In addition, studies have largely ignored the potential for sexual selection on female genitalia, despite male and female structures presumably co-evolving. Insects tend to show negative allometry in both male and female genitalia, while in contrast, the few studies carried out in mammals (males only) show positive allometry. Reasons for these differences between the taxa still remain unclear. However, in mammals, three main mechanisms have been proposed for genital evolution, namely, sperm competition, female cryptic choice and sexual conflict. In the first such study that we are aware of, we examined intra-specific genital allometry in both males and females of a mammal, the subterranean solitary Cape dune mole-rat, Bathyergus suillus. We found positive allometry occurring in male genitalia, which is consistent with previous vertebrate studies. Similarly, we found that female genitalia also exhibited positive allometry further supporting the notion of co-evolution of male and female genitalia. Although it is difficult to distinguish between the forces or mechanisms determining this directional selection, we suggest that several reproductive advantages are incurred as a result of positive allometric relationship of the genitalia in B. suillus and such advantages are also likely in other subterranean mammals. Our study further highlights the differences in genital allometry across taxa.  相似文献   

12.
Reproductive proteins often diverge rapidly between species. This pattern is frequently attributed to postmating sexual selection. Heliconius butterflies offer a good opportunity to examine this hypothesis by contrasting patterns of reproductive protein evolution between clades with divergent mating systems. Pupal-mating Heliconius females typically mate only once, limiting opportunity for postmating sexual selection. In contrast, adult-mating females remate throughout life. Reproductive protein evolution is therefore predicted to be slower and show little evidence of positive selection in the pupal-mating clade. We examined this prediction by sequencing 18 seminal fluid protein genes from a dozen Heliconius species and a related outgroup. Two proteins exhibited dN/dS > 1, implicating positive selection in the rapid evolution of at least a few Heliconius seminal fluid proteins. However, contrary to predictions, the average evolutionary rate of seminal fluid proteins was greater among pupal-mating Heliconius. Based on these results, we suggest that positive selection and relaxed constraint can generate conflicting patterns of reproductive protein evolution between mating systems. As predicted, some loci may show elevated evolutionary rates in promiscuous taxa relative to monandrous taxa resulting from adaptations to postmating sexual selection. However, when monandry is derived (as in Heliconius), the opposite pattern may result from relaxed selective constraints.  相似文献   

13.
A role for sexual selection in the evolution of insect cuticular hydrocarbons (CHCs) is suggested by observations of selection acting on male CHCs during female mate choice. However, evidence that CHCs evolve in response to sexual selection is generally lacking, and there is a need to extend our understanding beyond well‐studied taxa. Experimental evolution offers a powerful approach to investigate the effect of sexual selection on the evolution of insect CHCs. We conducted such an experiment using the dung beetle, Onthophagus taurus. After six, 12 and 21 generations of experimental evolution, we measured the CHCs of beetles from three populations subject to sexual selection and three populations within which sexual selection had been removed via enforced monogamy. We found that the male CHC profile responded to the experimental removal of sexual selection. Conversely, the CHC profile of females responded to the presence of sexual selection but not to its removal. These results show that sexual selection can be an important mechanism affecting the evolution of insect CHCs and that male and female CHCs can evolve independently.  相似文献   

14.
Selection pressures influencing the way in which males stimulate females during copulation are not well understood. In mammals, copulatory stimulation can influence female remating behaviour, both via neuroendocrine mechanisms mediating control of sexual behaviour, and potentially also via effects of minor injury to the female genital tract. Male adaptations to increase copulatory stimulation may therefore function to reduce sperm competition risk by reducing the probability that females will remate. This hypothesis was tested using data for primates to explore relationships between male penile anatomy and the duration of female sexual receptivity. It was predicted that penile spines or relatively large bacula might function to increase copulatory stimulation and hence to reduce the duration of female sexual receptivity. Results of the comparative analyses presented show that, after control for phylogenetic effects, relatively high penile spinosity of male primates is associated with a relatively short duration of female sexual receptivity within the ovarian cycle, although no evidence was found for a similar relationship between baculum length and duration of female sexual receptivity. The findings presented suggest a new potential function for mammalian penile spines in the context of sexual selection, and add to growing evidence that sperm competition and associated sexual conflict are important selection pressures in the evolution of animal genitalia.  相似文献   

15.
16.
Sexual conflict can result in an ‘evolutionary arms race’ between males and females, with the evolution of sexual antagonistic traits used to resolve the conflict in favor of one sex over the other. We assessed the resolution of sexual conflict in a Hyalella amphipod species by manipulating putative sexually antagonistic traits in males and females and used mate‐guarding duration as our metric of conflict resolution. We discovered that large male posterior gnathopod size increased mate‐guarding duration, which suggests that it is a sexually antagonistic trait in this species. In contrast, female and male body size did not significantly affect mate‐guarding duration. Given that male posterior gnathopods show heightened condition dependence, future investigations should explore the interactive effects of sexual conflict and ecological context on trait evolution, phenotypic divergence, and speciation to elucidate the complex mechanisms involved in the evolution of biological diversity.  相似文献   

17.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

18.
Natural and sexual selection can have either opposing or synergistic effects on the evolution of traits. In the green swordtail Xiphophorus helleri , sexual selection arising from female choice is known to favour larger males and males with longer swords. We examined variation in male and female size and fin morphology among 15 populations that varied in their predation environments. Males and females from populations in which piscivorous fishes were present had longer and deeper bodies than did males and females from populations in which piscivorous fishes were absent. Controlling for a positive effect of body size on sword length, males from populations in which piscivores were present had relatively shorter swords than did males from populations in which piscivores were absent. The associations between morphology and predation environment may be due to direct effects of predation, indirect effects of predation, other sources of selection that covary with predator presence, or other environmental effects on trait expression. These results suggest that while sexual selection favours longer swords, natural selection may have an opposing effect on sword length in populations with predators. Natural selection on body size, however, may act synergistically with sexual selection in populations with predators; both may favour the evolution of larger body size. The body size results for X. helleri contrast with related taxa that have become model systems for the study of life history evolution.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 87–100.  相似文献   

19.
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.  相似文献   

20.
Sexually selected ornaments are highly variable and the factors that drive variation in ornament expression are not always clear. Rare instances of female-specific ornament evolution (such as in some dance fly species) are particularly puzzling. While some evidence suggests that such rare instances represent straightforward reversals of sexual selection intensity, the distinct nature of trade-offs between ornaments and offspring pose special constraints in females. To examine whether competition for access to mates generally favors heightened ornament expression, we built a phylogeny and conducted a comparative analysis of Empidinae dance fly taxa that display female-specific ornaments. We show that species with more female-biased operational sex ratios in lek-like mating swarms have greater female ornamentation, and in taxa with more ornate females, male relative testis investment is increased. These findings support the hypothesis that ornament diversity in dance flies depends on female receptivity to mates, which is associated with contests for nutritious nuptial gifts provided by males. Moreover, our results suggest that increases in female receptivity lead to higher levels of sperm competition among males. The incidence of both heightened premating sexual selection on females and postmating selection on males contradicts assertions that sex roles are straightforwardly reversed in dance flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号