首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T R Tritton 《Biochemistry》1978,17(19):3959-3964
  相似文献   

2.
3.
4.
The mitochondrial ribosomes.   总被引:3,自引:0,他引:3  
M Kitakawa  K Isono 《Biochimie》1991,73(6):813-825
  相似文献   

5.
6.
7.
Hyper-accurate ribosomes inhibit growth.   总被引:21,自引:3,他引:18       下载免费PDF全文
We have compared both in vivo and in vitro translation by ribosomes from wild-type bacteria with those from streptomycin-resistant (SmR), streptomycin-dependent (SmD) and streptomycin-pseudo-dependent (SmP) mutants. The three mutant bacteria translate more accurately and more slowly in the absence of streptomycin (Sm) than do wild-type bacteria. In particular, the SmP bacteria grow at roughly half the rate of the wild-type in the absence of Sm. The antibiotic stimulates both the growth rate and the translation rate of SmP bacteria by approximately 2-fold, but it simultaneously increases the nonsense suppression rate quite dramatically. Kinetic experiments in vitro show that the greater accuracy and slower translation rates of mutant ribosomes compared with wild-type ribosomes are associated with much more rigorous proofreading activities of SmR, SmD and SmP ribosomes. Sm reduces the proofreading flows of the mutant ribosomes and stimulates their elongation rates. The data suggest that these excessively accurate ribosomes are kinetically less efficient than wild-type ribosomes, and that this inhibits mutant growth rates. The stimulation of the growth of the mutants by Sm results from the enhanced translational efficiency due to the loss of proofreading, which more than offsets the loss of accuracy caused by the antibiotic.  相似文献   

8.
9.
We describe three groups of small angle neutron scattering (SANS) experiments with translating ribosomes: 1) regular protonated (normal abundance hydrogen) particles; 2) two isotopic hybrid particles which are reconstituted from one protonated and the other deuterated subunit; 3) four isotypic hybrid particles differing from each other by the extent of protein and RNA deuteration. Using the SANS contrast variation method the radii of gyration of protein and RNA components in both ribosomal subunits as well as the intersubunit distance in the pre- and post-translocation states were determined. The results obtained suggest the following model of the ribosome as a dynamic machine. The ribosome oscillates between two major conformers differing in geometrical dimensions. The 'active' (pulsating) part of the ribosome is the 30S subunit. We believe that the movement of its 'head' relative to the passive 50S subunit is the main mechanical act of translocation. The radius of gyration of the 30S subunit and the intersubunit distance change upon the movement. This is corroborated by neutron scattering data.  相似文献   

10.
The assembly of prokaryotic ribosomes.   总被引:23,自引:0,他引:23  
K H Nierhaus 《Biochimie》1991,73(6):739-755
  相似文献   

11.
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.  相似文献   

12.
Immunoglobulin heavy (Ig H) and light (Ig L) chain mRNA molecules have been released from the endoplasmic reticulum (ER) membranes as free (F) mRNP particles when MOPC 21 (P3K) mouse myeloma cells are exposed to a hypertonic initiation block (HIB). The subsequent fate of these mRNA sequences has been examined when the cells are returned to normal growth medium. Upon return to isotonicity, all previously translated mRNA molecules reassociate with ribosomes and form functional polysomes. Ig H mRNA is found incorporated first into F polysomes and then into membrane-bound (MB) polysomes. Kinetic studies indicate that the time of passage of Ig H mRNA in F polysomes is approximately 30 s, during which a nascent polypeptide chain of approximately 80 amino acids would have been completed. When the rate of polypeptide elongation is depressed with emetine during the recovery from HIB, both Ig H and L mRNA molecules accumulate in small F polysomes. These results indicate that the formation of Ig-synthesizing polysomes proceeds in the sequence: mRNA leads to F polysomes leads to MB polysomes. With the additional observation that during HIB recovery puromycin completely prevents the reassociation of Ig mRNA with the ER, these findings support a model of MB polysome formation in which the specificity of membrane attachment is determined by the nature of the N- terminal amino acid sequence of the nascent polypeptide chain.  相似文献   

13.
Previous studies in this series (M. Noll et al., 1973a,b; Noll & Noll, 1974) have established that in Escherichia coli the ability of subunits to form vacant 70 S ribosome couples at 10 mm-Mg2+ is a stringent condition for activity in the translation of natural messenger (R17 RNA). The present study examines the structural basis of subunit interaction. It is found that vacant ribosome couples prepared by various methods fall into two classes, “tight” couples and “loose” couples, that differ in the affinity of their subunits for each other. Detection and separation of the two particle species is possible by ultracentrifugation. When analyzed on sucrose gradients at 6 mm-Mg2+ and moderate speed (30,000 revs/min), tight couples sediment as undissociated 70 S ribosomes, whereas loose couples are completely dissociated and sediment as 30 S and 50 S subunits. At 15 mm-Mg2+ in the gradient, both species sediment as a 70S peak. At 10 mm-Mg2+ and 60,000 revs/min, two peaks (63 S and 55 S) are seen because the high hydrostatic pressure causes more pronounced dissociation of the loose than of the tight couples.Association is dependent on the state of each subunit. Removal of Mg2+ produces 30 S b-particles that are unable to associate with 50 S subunits unless reconverted to the 30 S a-form by thermal activation according to Zamir et al. (1971). In the dissociated state, 50 S subunits tend to change irreversibly to a 50 S b-modification that produces loose couples upon association with 30 S a-subunits. The 50 S a → 50 S b transition could not be related to breaks in 23 S RNA detectable by sedimentation analysis. However, mild treatment of 50 S a-subunits with RNase produces particles that associate with 30 S a-subunits to couples that are less stable than the loose couples resulting from a dissociation/association step.Fresh S-30 extracts contain only tight couples (approx. 80%) and subunits (approx. 20%). Our results suggest that loose couples are artefacts derived from tight couples by a structural or conformational modification.Interaction-free subunits that previously were found to form a primitive initiation complex with poly(U) and tRNAPhe (Schreier & Noll, 1970,1971), and to be active in phenylalanine polymerization, are shown to consist of the b-form of each subunit.It is likely that conflicting results obtained in the study of the mechanism of initiation and other aspects of ribosome function are due to the lack of structural criteria required for standardizing the ribosome preparation used by different investigators. This study provides simple methods and criteria to classify and separate physically all ribosome and ribosome subunits that have been observed into well-defined classes of predictable activity.  相似文献   

14.
Relaxation kinetics measurements on two types of ribosome preparations were parformed by the pressure-jump and temperature-Jump techniques, using light scattered at 90° as detector. For freshly prepared tibosomes isolated as 70S tight coupled from 26 000 RPM sucrose gradint sedimentation in 10 mM Mg2+, surprisingly large reaction amplitudes were found in 10 mM Mg2+ wilh both techniques, leading to an overall formation constant for 70S couples approximately three orders of magnitude smaller than that reported fot tight couples. For pelleted, two-tunes salt-washed ribosomes, amplitude titration versus Mg2+ in the pressure-jump apparatus showed an amplitude maximum near 10 mM Mg2+ with a relaxation time near 20 ms, and a second amplitude maximum near 2.5 mM Mg2+ with a relaxation time near 25 s. Both types of preparation on reanalysis on sucrose gradients at 5 mM Mg2+ showed approximately 15% of subunits, with a distinct zone in the 50S region. 70S light couples recovered from a sucrose density gradient separation at 5 mM Mg2+ on pelleted two-times salt-washed ribosomes behaved in the same way as the original sample in pressure-jump experiments at 10 mM Mg2+. These findings have been interpreted as follows (I) the processes observed at 10 mM Mg2+ are due entirety to the relatively small loose couple content of the samples, even in the case of material isolated as 70S tight couples, (2) the processes observed at 2.5 mM Mg2+ are due almost entirely to the preponderant tight couple population of the material, and (3) samples isolated as 70S tight couples from sucrose gradients at 5 mM Mg2+ spontaneously revert within hours into micro-heterogeneous material containing about 15% loose couples, for both types of ribosomes.  相似文献   

15.
16.
17.
18.
1. During the action of mescaline sulphate on goat brain-cortex slices the ribosomal particles become susceptible to breakdown, releasing protein, RNA, acidsoluble nucleotides and ninhydrin-positive materials, resulting in loss of ribosomal enzyme activities. 2. Ribosomes of the mescaline-treated cortex slices undergo rapid degradation in the presence of trypsin and ribonuclease. 3. Mescaline does not alter the chemical and nucleotide compositions or the u.v.-absorption characteristics of ribosomal particles, however.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号