首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was directly related to the concentration of oxalate in the medium (1 to 111 mM), and cell yields were approximately 1.1 g (dry weight)/mol of oxalate degraded. Oxalate was stoichiometrically degraded to CO2 and formate. These anaerobes occupy a unique ecological niche and are distinct from any previously described oxalate-degrading bacteria.  相似文献   

2.
Enrichment cultures that anaerobically degraded oxalate were obtained from lake sediment inocula. From these, 5 pure cultures of anaerobic oxalate-degrading bacteria were isolated and partially characterized. The isolates were Gram-negative, non-sporeforming, non-motile, obligate anaerobes. Oxalate was required for growth and was stoichiometrically converted to formate; 14CO2 was also recovered when 14C-oxalate was added. Maximal growth occurred when the oxalate concentration was 50 mM. Acetate stimulated growth in the presence of oxalate, however, 14C-experiments indicated that acetate was only utilized for cell carbon.The isolates were either spiral-shaped or rod-shaped organisms. The first morphotype grew much more slowly than the second and exhibited 13-fold lower cell yields. These isolates represent a new strain of oxalate-degrading bacteria. The second morphotype was similar to the anaerobic oxalate-degrading bacteria previously found in rumen. This report extends the known habitats in which anaerobic oxalate-degrading organisms have been found to include aquatic sediments.  相似文献   

3.
Yue ZB  Yu HQ  Hu ZH  Harada H  Li YY 《Bioresource technology》2008,99(9):3418-3423
Polyoxyethylene sorbitan monoolate (Tween 80) was used to enhance the anaerobic acidogenesis of Canna indica L. (canna) by rumen culture in this study. Dose of Tween 80 at 1 ml/l enhanced the volatile fatty acids (VFA) production from the acidogenesis of canna compared to the control. However, Tween 80 at higher dosages than 5 ml/l inhibited the rumen microbial activity and reduced the VFA yield. Response surface methodology was successfully used to optimize the VFA yield. A maximum of VFA yield of 0.147 g/g total solids (TS) added was obtained at canna and Tween 80 concentrations of 6.3g TS/l and 2.0 ml/l, respectively. Dosage of Tween 80 at 1-3.75 ml/l reduced the unproductive adsorption of microbes or enzymes on the lignin part in canna and increased microbial activity. A high VFA production was achieved from canna presoaked with Tween 80, suggesting that the structure of canna was disrupted by Tween 80.  相似文献   

4.
The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin.  相似文献   

5.
Two dead-end metabolites of anaerobic toluene transformation, benzylsuccinic acid and benzylfumaric acid, accumulated in sulfate-reducing enrichment cultures that were fed toluene as the sole carbon source. Stable isotope-labeled toluene and gas chromatography-mass spectrometry were used to confirm that the compounds resulted from toluene metabolism. The two metabolites constituted less than 10% of the toluene carbon (over 80% was mineralized to carbon dioxide, according to a previous study). This study demonstrates that the novel nonproductive pathway proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for a denitrifying pure culture applies to disparate anaerobic bacteria.  相似文献   

6.
Two dead-end metabolites of anaerobic toluene transformation, benzylsuccinic acid and benzylfumaric acid, accumulated in sulfate-reducing enrichment cultures that were fed toluene as the sole carbon source. Stable isotope-labeled toluene and gas chromatography-mass spectrometry were used to confirm that the compounds resulted from toluene metabolism. The two metabolites constituted less than 10% of the toluene carbon (over 80% was mineralized to carbon dioxide, according to a previous study). This study demonstrates that the novel nonproductive pathway proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for a denitrifying pure culture applies to disparate anaerobic bacteria.  相似文献   

7.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

8.
The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin.  相似文献   

9.
Abstract The production of urea by Thiosphaera pantotropha was studied. Batch cultures were grown on acetate as energy source and with NO3 or O2 as terminal electron acceptor. Urea accumulated in the media during exponential growth in aerobic and anaerobic cultures of T. pantotropha . Urea production continued after the cells had entered the stationary growth phase. Bacterial ability to produce urea was supported by studies of cultures enriched for denitrifying, sulphate-reducing and fermenting bacteria. The results implied that urea production was common among bacteria normally considered to be important in marine sediments.  相似文献   

10.
11.
The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.  相似文献   

12.
The generation of transmembrane ion gradients by Oxalobacter formigenes cells metabolizing oxalate was studied. The magnitudes of both the transmembrane electrical potential (delta psi) and the pH gradient (internal alkaline) decreased with increasing external pH; quantitatively, the delta psi was the most important component of the proton motive force. As the extracellular pH of metabolizing cells was increased, intracellular pH increased and remained alkaline relative to the external pH, indicating that O. formigenes possesses a limited capacity to regulate internal pH. The generation of a delta psi by concentrated suspensions of O. formigenes cells was inhibited by the K+ ionophore valinomycin and the protonophore carbonyl cyanide-m-chlorophenylhydrazone, but not by the Na+ ionophore monensin. The H+ ATPase inhibitor N,N'-dicyclohexyl-carbodiimide inhibited oxalate catabolism but did not dissipate the delta psi. The results support the concept that energy from oxalate metabolism by O. formigenes is conserved not as a sodium ion gradient but rather, at least partially, as a transmembrane hydrogen ion gradient produced during the electrogenic exchange of substrate (oxalate) and product (formate) and from internal proton consumption during oxalate decarboxylation.  相似文献   

13.
Abstract Concentrations of oxalate-degrading anaerobes in ruminal contents of sheep were determined from counts of colonies producing clear zones on a calcium oxalate medium (D agar with 7 mM CaCl2). Viable counts of oxalate degraders from a 55-kg sheep fed a diet containing 32% halogeton (4.6% oxalate) averaged 2.6 × 106/ g (dry weight). When the halogeton concentration in the diet was reduced to 16%, counts of oxalate degraders decreased nearly 300-fold. Oxalate-degrading isolates from this sheep were similar to OxB, the type strain of Oxalobacter formigenes . When a 45-kg sheep was fed diets containing 2.2, 1.5, and 0.8% oxalate, viable counts of oxalate degraders (enumerated on D agar with 14 mM CaCl2 and 20% filter-sterilized ruminal fluid) represented 0.85, 0.52, and 0.06% of the total viable population, respectively; total viable counts were essentially unchanges by these concentrations of dietary oxalate. Similar percentages of oxalate degraders were also observed when a 23-kg sheep was fed diets containing 1.5 or 0.8% oxalate. This report presents the first direct measurements of the concentrations of oxalate-degrading bacteria in the rumen and supports the concept that the availability of oxalate in the diet influences the proportion of oxalate-degrading bacteria in the rumen  相似文献   

14.
15.
Although anaerobic biodegradation of di-n-butyl phthalic acid ester (DBP) has been studied over the past decade, only little is known about the microorganisms involved in the biological anaerobic degradation pathways. The aim of this work is to characterize the microbial community dynamics in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica, a microorganism described previously as an anaerobic benzaldehyde degrader. Within the archaeal community, there was a shift between two different species of the genus Methanosaeta sp., indicating a highly specific impact of DBP or degradation products on archaeal species. RNA-directed probes were designed from SSCP sequences, and FISH observations confirmed the dominance of S. saccharolytica, and indicated floccular microstructures, likely providing favourable conditions for DBP degradation.  相似文献   

16.
Anaerobic enrichment cultures catalysing the reductive dechlorination of chlorinated benzoic acids were obtained from three fresh-water sediments collected from seven different locations. Sub-cultures from these enrichments specifically removed ortho-substituted chlorine from 2,3,6-, 2,3,5- and 2,4,6-trichlorobenzoic acid, yielding chloride and 2,5-, 3,5-, and 2,4-dichlorobenzoic acids, respectively. These reductive dehalogenations were stimulated by the addition of benzoate and/or volatile organic acids. In one of these enrichments dehalogenation of ortho- and/or para-chlorine substituents was also observed from 2,3-, 2,4-, 2,5-, and 3,4-dichlorobenzoic acid, yielding 3- and 4-chlorobenzoate. Removal of meta-chlorines was not observed in any of the enrichments.  相似文献   

17.
Characteristics of methanogens isolated from bovine rumen.   总被引:1,自引:2,他引:1       下载免费PDF全文
Six strains of methanogens were isolated from 10(-8) and 10(-9) ml of bovine rumen contents. All strains had the morphologic and physiologic characteristics of Methanobrevibacter spp. Four strains required coenzyme M; two did not. Growth of all strains either depended on or was stimulated by a mixture of isobutyric, isovaleric, 2-methylbutyric, and valeric acids. None of the strains reacted with antiserum against the type strain of Methanobrevibacter ruminantium.  相似文献   

18.
Lactic acid-producing bacteria are important in many fermentations, such as the production of biobased plastics. Insight in the competitive advantage of lactic acid bacteria over other fermentative bacteria in a mixed culture enables ecology-based process design and can aid the development of sustainable and energy-efficient bioprocesses. Here we demonstrate the enrichment of lactic acid bacteria in a controlled sequencing batch bioreactor environment using a glucose-based medium supplemented with peptides and B vitamins. A mineral medium enrichment operated in parallel was dominated by Ethanoligenens species and fermented glucose to acetate, butyrate and hydrogen. The complex medium enrichment was populated by Lactococcus, Lactobacillus and Megasphaera species and showed a product spectrum of acetate, ethanol, propionate, butyrate and valerate. An intermediate peak of lactate was observed, showing the simultaneous production and consumption of lactate, which is of concern for lactic acid production purposes. This study underlines that the competitive advantage for lactic acid-producing bacteria primarily lies in their ability to attain a high biomass specific uptake rate of glucose, which was two times higher for the complex medium enrichment when compared to the mineral medium enrichment. The competitive advantage of lactic acid production in rich media can be explained using a resource allocation theory for microbial growth processes.  相似文献   

19.
Ferrous iron enhanced the toluene degradation rate of sulfidogenic enrichment cultures inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Ferrous iron had an analogous effect on the degradation rate of benzoic acid, a transient metabolite of anaerobic toluene degradation in these cultures, when benzoic acid was used as a sole carbon and energy source. Two hypotheses were proposed to explain iron's effect: (a) Iron may have prevented sulfide toxicity via precipitation of sulfide as FeS, and (b) iron might have been a limiting nutrient required for degradation (i.e., amendments of iron could have compensated for iron removed from solution by precipitation as FeS). To test these hypotheses, substrate degradation rates were compared in the presence of FeSO4 (a sulfate source that both precipitates sulfide species and precludes iron limitation) versus ZnSO4 (a sulfate source that precipitates sulfide species but does not preclude iron limitation) versus MgSO4 (a sulfate source that neither precipitates sulfide nor precludes iron limitation). For both toluene and benzoic acid, FeSO4 and ZnSO4 were comparable in their enhancement of substrate degradation rates and were superior to MgSO4 in that respect. Thus, iron appears to ameliorate sulfide toxicity, not nutritional iron limitation, in these cultures. The observation that ethylenediaminetetraacetic acid, a chelating agent capable of retaining iron in solution in the presence of sulfide, did not stimulate the cultures is consistent with this conclusion. The implications of these results for bioremediation of fuel-contaminated aquifers that contain sulfate-reducing bacteria are discussed. Correspondence to: H.R. Beller.  相似文献   

20.
 Degradation of tetrachloroethene (perchloroethylene, PCE) was investigated by combining the metabolic abilities of anaerobic bacteria, capable of reductive dechlorination of PCE, with those of aerobic methanotrophic bacteria, capable of co-metabolic degradation of the less-chlorinated ethenes formed by reductive dechlorination of PCE. Anaerobic communities reductively dechlorinating PCE, trichloroethene (TCE) and dichloroethenes were enriched from various sources. The maximum rates of dechlorination observed for various chloroethenes in these batch enrichments were: PCE to TCE (341 μmol l-1 day-1), TCE to cis-dichloroethene (159 μmol l-1 day-1), cis-dichloroethene to chloroethene (99 μmol l-1 day-1) and trans-dichloroethene to chloroethene (22 μmol l-1 day-1). A mixture of these enrichments was inoculated into an anoxic fixed-bed upflow column. In this column PCE was converted mainly into cis-1, 2-dichloroethene, small amounts of TCE and chloroethene, and chloride. Enrichments of aerobic methanotrophic bacteria were grown in an oxic fixed-bed downflow column. Less-chlorinated ethenes, formed in the anoxic column, were further metabolized in this oxic methanotrophic column. On the basis of analysis of chloride production and the disappearance of chlorinated ethenes it was demonstrated that complete degradation of PCE was possible by combining these two columns. Operation of the two-column system under various process conditions indicated that the sensitivity of the methanotrophic bacteria to chlorinated intermediates represented the bottle-neck in the sequential anoxic/oxic degradation process of PCE. Received: 24 October 1994 / Received revision: 20 January 1995 / Accepted: 23 January 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号