首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-H dipolar coupling values were measured for a natural-abundance sample of the pentasaccharide beta-D-Galp-(1-->3)-[alpha-L-Fucp-(1-->4)]-beta-D-GlcNAcp-(1 -->3)-beta-D- Galp-(1-->4)-beta-D-Glcp ('lacto-N-fucopentaose 2') (LNF-2), in a 7.5% solution of dimyristoyl phosphatidylcholine-dihexanoyl phosphatidylcholine bicelle liquid crystals oriented in the NMR magnetic field. Interpretation of the dipolar coupling data and NOE confirms the conformational model for the Lewis(a) trisaccharide epitope based on NOE, molecular dynamics simulations, and scalar coupling data and provided new structural information for the remaining residues of the pentasaccharide. Since residual dipolar coupling provides information on long-range order, it is a valuable complement to other types of NMR data such as NOE and scalar coupling for exploring conformations of complex oligosaccharides.  相似文献   

2.
The structures of two octasaccharides, one nonasaccharide, and one undecasaccharide, isolated from human milk, have been investigated by 1H- and 13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides are: beta-D-Galp-(1----4)-[alpha-L-Fucp- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-[alpha-L-Fucp+ ++- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-D-Glc; beta-D-GALp-(1----3)-[alpha-L-Fucp-(1----4)]-beta-D-GlcpNAc-(1---- 3)-beta-D - Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----3)-beta -D-Galp- (1----4)-D-Glc; beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1---- 6)-(alpha - L-Fucp-(1----2)-beta-D-Gal-(1----3)-[alpha-L-Fucp-(1----4)]- beta-D-GlcpNAc- (1----3))-beta-D-Galp-(1----4)-D-Glc; and alpha-L-Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3) -beta-D- Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----6)-[alp ha-L- Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)]-beta-D -Galp- (1----4)-D-Glc. The two octasaccharides have been previously isolated from human milk as a mixture, and in a pure form from new-born feces, but the n.m.r. data were not provided. These two octasaccharides display the di-Lewis X and the composite Lewis A-Lewis X antigenic determinant, previously described as neo-antigens of adenocarcinoma cell lines.  相似文献   

3.
Glycosyltransferases A and B utilize the donor substrates UDP-GalNAc and UDP-Gal, respectively, in the biosynthesis of the human blood group A and B trisaccharide antigens from the O(H)-acceptor substrates. These enzymes were cloned as synthetic genes and expressed in Escherichia coli, thereby generating large quantities of enzyme for donor specificity evaluations. The amino acid sequence of glycosyltransferase A only differs from glycosyltransferase B by four amino acids, and alteration of these four amino acid residues (Arg-176-->Gly, Gly-235-->Ser, Leu-266-->Met and Gly-268-->Ala) can change the donor substrate specificity from UDP-GalNAc to UDP-Gal. Crossovers in donor substrate specificity have been observed, i.e., the A transferase can utilize UDP-Gal and B transferase can utilize UDP-GalNAc donor substrates. We now report a unique donor specificity for each enzyme type. Only A transferase can utilize UDP-GlcNAc donor substrates synthesizing the blood group A trisaccharide analog alpha-D-Glcp-NAc-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2 )7CH3 (4). Recombinant blood group B was shown to use UDP-Glc donor substrates synthesizing blood group B trisaccharide analog alpha-D-Glcp-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2) 7CH3 (5). In addition, a true hybrid enzyme was constructed (Gly-235-->Ser, Leu-266-->Met) that could utilize both UDP-GlcNAc and UDP-Glc. Although the rate of transfer with UDP-GlcNAc by the A enzyme was 0.4% that of UDP-GalNAc and the rate of transfer with UDP-Glc by the B enzyme was 0.01% that of UDP-Gal, these cloned enzymes could be used for the enzymatic synthesis of blood group A and B trisaccharide analogs 4 and 5.  相似文献   

4.
The solution structure and dynamics of sucrose are examined using a combination of NMR residual dipolar coupling and molecular mechanics force fields. It is found that the alignment tensors of the individual rings are different, and that fitting 35 measured residual dipolar couplings to structures with specific phi, psi values indicates the presence of three major conformations: phi, psi=(120 degrees ,270 degrees), (45 degrees, 300 degrees) and (90 degrees ,180 degrees). Furthermore, fitting two structures simultaneously to the 35 residual dipolar couplings results in a substantial improvement in the fits. The existence of multiple conformations having similar stabilities is a strong indication of motion, due to the interconversion among these states. Results from four molecular mechanics force fields are in general agreement with the experimental results. However, there are major disagreements between force fields. Because fits of residual dipolar couplings to structures are dependent on the force field used to calculate the structures, multiple force fields were used to interpret NMR data. It is demonstrated that the pucker of the fructofuranosyl ring affects the calculated potential energy surface, and the fit to the residual dipolar couplings data. Previously published 13C nuclear relaxation results suggesting that sucrose is rigid are not inconsistent with the present results when motional timescales are considered.  相似文献   

5.
The global fold of maltose-binding protein in complex with the substrate beta-cyclodextrin was determined by solution NMR methods. The two-domain protein is comprised of a single polypeptide chain of 370 residues, with a molecular mass of 42 kDa. Distance information in the form of H(N)-H(N), H(N)-CH(3) and CH(3)-CH(3) NOEs was recorded on (15)N, (2)H and (15)N, (13)C, (2)H-labeled proteins with methyl protonation in Val, Leu, and Ile (C(delta1) only) residues. Distances to methyl protons, critical for the structure determination, comprised 77 % of the long-range restraints. Initial structures were calculated on the basis of 1943 NOEs, 48 hydrogen bond and 555 dihedral angle restraints. A global pair-wise backbone rmsd of 5.5 A was obtained for these initial structures with rmsd values for the N and C domains of 2.4 and 3.8 A, respectively. Direct refinement against one-bond (1)H(N)-(15)N, (13)C(alpha)-(13)CO, (15)N-(13)CO, two-bond (1)H(N)-(13)CO and three-bond (1)H(N)-(13)C(alpha) dipolar couplings resulted in structures with large numbers of dipolar restraint violations. As an alternative to direct refinement against measured dipolar couplings we have developed an approach where discrete orientations are calculated for each peptide plane on the basis of the dipolar couplings described above. The orientation which best matches that in initial NMR structures calculated from NOE and dihedral angle restraints exclusively is used to refine further the structures using a new module written for CNS. Modeling studies from four different proteins with diverse structural motifs establishes the utility of the methodology. When applied to experimental data recorded on MBP the precision of the family of structures generated improves from 5.5 to 2.2 A, while the rmsd with respect to the X-ray structure (1dmb) is reduced from 5.1 to 3.3 A.  相似文献   

6.
Lysozyme from T4 bacteriophage is comprised of two domains that are both involved in binding substrate. Although wild-type lysozyme has been exclusively crystallized in a closed form that is similar to the peptidoglycan-bound conformation, a more open structure is thought to be required for ligand binding. To determine the relative arrangement of domains within T4 lysozyme in the solution state, dipolar couplings were measured in several different dilute liquid crystalline media by solution NMR methods. The dipolar coupling data were analyzed with a domain orientation procedure described previously that utilizes high- resolution X-ray structures. The cleft between the domains is significantly larger in the average solution structure than what is observed in the X-ray structure of the ligand-free form of the protein (approximately 17 degrees closure from solution to X-ray structures). A comparison of the solution domain orientation with X-ray-derived structures in the protein data base shows that the solution structure resembles a crystal structure obtained for the M6I mutant. Dipolar couplings were also measured on the lysozyme mutant T21C/T142C, which was oxidized to form an inter-domain disulfide bond (T4SS). In this case, the inter-domain solution structure was found to be more closed than was observed in the crystal (approximately 11 degrees). Direct refinement of lysozyme crystal structures with the measured dipolar couplings using the program CNS, establishes that this degree of closure can be accommodated whilst maintaining the inter-domain cystine bond. The differences between the average solution conformations obtained using dipolar couplings and the crystal conformations for both forms of lysozyme investigated in this study illustrate the impact that crystal packing interactions can have on the arrangement of domains within proteins and the importance of alternative methods to X-ray crystallography for evaluating inter-domain structure.  相似文献   

7.
Ohnishi S  Shortle D 《Proteins》2003,50(4):546-551
Residual dipolar couplings provide information on the orientation of individual bond vectors with respect to a unique set of molecular axes. We report that short peptides from 2 to 15 amino acids in length of arbitrary sequence exhibit a modest range of residual dipolar couplings when aligned in either strained polyacrylamide gels or alkyl-PEG bicelles. The absence of significant line broadening in gels suggests peptides align predominantly through steric interactions with the polyacrylamide matrix. However, broadening of NMR lines for a subset of residues aligned in bicelles indicates some peptides bind weakly to these lipid disks, yet a weak negative correlation between the couplings measured in gels and bicelles is consistent with steric hindrance playing a role in both media. The observation of dipolar couplings for peptides of length 10-15 suggests the statistical segment lengths of polypeptide chains must often be >10-15 residues, with data from denatured proteins indicating even larger values. Presumably, local side-chain backbone interactions severely restrict chain flexibility, with the cumulative effect of many such restrictions giving rise to biases in chain direction that may persist for the entire length of a protein chain. Comparison of experimental dipolar couplings for peptides with couplings calculated for ensembles of conformations generated by molecular dynamics should permit evaluation of the accuracy of molecular mechanics potentials in reproducing sequence-specific preferences for phi and psi angles.  相似文献   

8.
The conformational behavior of the synthetic hexa- and heptasaccharide methyl beta-glycosides alpha-D-Manp-(1 --> 6)-[alpha-D-Manp-(1 --> 3)-][beta-D-Xylp-(1 --> 2)-]beta-D-Manp-(1 --> 4)-beta-D-GlcpNAc-(1 --> 4)-beta-D-GlcpNAc-(1 --> OMe and alpha-D-Manp-(1 --> 6)-[alpha-D-Manp-(1 --> 3)-][beta-D-Xylp-(1 --> 2)-]beta-D-Manp-(1 --> 4)-beta-D-GlcpNAc-(1 --> 4)-[alpha-L-Fucp-(1 --> 6)-]beta-D-GlcpNAc-(1 --> OMe, representing the xylosylated and the xylosylated alpha-(1 --> 6)-fucosylated core structures of N-glycans in alpha(D)-hemocyanin of the snail Helix pomatia, respectively, were investigated by 1H NMR spectroscopy in combination with molecular dynamics (MD) simulations in water. 1H and 13C chemical shifts of the oligosaccharides were assigned using 1H-(1)H COSY, TOCSY, and NOESY, and 1H-(13)C HMQC techniques. Experimental 2D 1H cross-peak intensities from one series of NOESY and one series of ROESY experiments of the two oligosaccharides were compared with calculated values derived from MD trajectories using the CROSREL program, yielding information about the conformation of each glycosidic linkage of the methyl glycosides. The flexibility of the linkages was described by generalized order parameters and internal rotation correlation times. Analysis of the data indicated that several conformations are likely to exist for the alpha-D-Man-(1 --> 6)-beta-D-Man, the alpha-L-Fuc-(1 --> 6)-beta-D-GlcNAc, and the alpha-D-Man-(1 --> 3)-beta-D-Man linkage, whereas the beta-D-Xyl-(1 --> 2)-beta-D-Man-(1 --> 4)-beta-D-GlcNAc-(1 --> 4)-beta-D-GlcNAc fragment occurs in one rigid conformation. No significant differences were found between the corresponding structural elements in both methyl glycosides. NOESY and ROESY experiments proved to be suitable for providing the experimental data required, however, due to more overlap within the ROESY spectra, reducing the accuracy of the analysis, NOESY spectral analysis is preferred.  相似文献   

9.
The alpha-L-Fucp-(1 --> 3)-D-GlcpNAc disaccharide structure is a vital core unit of the oligosaccharide components of glycoconjugates isolated from human milk and blood group substances. Alpha-L-Fucosidase from Penicillium multicolor catalyses the transfer of L-fucose from donor structures such as alpha-L-FucpOpNP and alpha-L-FucpF to various GlcpNAc derivatives and Glcp, forming alpha-(1 --> 3) linkages. The synthesis of several biologically relevant disaccharides including alpha-L-Fucp-(1 --> 3)-alpha-D-GlcpNAcOMe, alpha-L-Fucp-(1 --> 3)-alpha-D-GlcpNAcOAll, alpha-L-Fucp-(1 --> 3)-beta-D-GlcpNAcOAll, alpha-L-Fucp-(1 --> 3)-D-GlcpNAc and alpha-L-Fucp-(1 --> 3)-D-Glcp has been achieved in up to 34% yields by application of this enzyme.  相似文献   

10.
Hada N  Sonoda Y  Takeda T 《Carbohydrate research》2006,341(10):1341-1352
A novel glycosphingolipid, beta-D-Manp-(1-->4)-[alpha-L-Fucp-(1-->3)]-beta-D-Glcp-(1-->1)-Cer, found in the millipede, Parafontaria laminata armigera, and multivalent derivatives of its carbohydrate moiety were synthesized. As the key step, the target glycolipid (1) was obtained through an inversion reaction at the 2-position of a beta-glucopyranoside residue yielding a beta-mannopyranoside. In addition, the synthesis of fluorescently labeled trimer and tetramer glycoconjugates (2, 3) was achieved by iterative amide bond formation using a monomer unit (24).  相似文献   

11.
The Lewis b hexasaccharide, alpha-L-Fucp-(1 --> 2)-beta-D-Galp-(1 --> 3)-[alpha-L-Fucp-(1 --> 4)]-beta-D-GlcpNAc-(1 --> 3)-beta-D-Galp-(l --> 4)-beta-D-Glcp, has been synthesised using a convergent synthesis. Starting from ethyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-beta-D-glucopyranoside, a thioglycoside tetrasaccharide donor block, was constructed through two orthogonal glycosylations with glycosyl bromide donors. First, the galactose moiety was introduced using silver triflate as a promoter and then the two fucose residues under halide-assisted conditions. Finally, this tetrasaccharide was linked to a spacer-equipped 3I,4I-diol lactose acceptor in a DMTST-promoted coupling to give, after deprotection, the Lewis b hexasaccharide as its 2-aminoethyl spacer-equipped derivative. This was coupled to human serum albumin (HSA), using the squarate ester methodology, in various saccharide-protein ratios, to give neoglycoconjugates with different saccharide loadings in about 50%) efficiency.  相似文献   

12.
We studied interaction of the lectin from the bark of Golden Rain shrub (Laburnum anagyroides, LABA) with a number of basic fucose-containing carbohydrate antigens by changes in its tryptophan fluorescence. The strongest LABA binding was observed for the trisaccharide H of type 6 [alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-D-Glc, Ka= 4.2 x 10(3) M(-1)]. The following antigens were bound with a weaker affinity: H-disaccharide alpha-L-Fucp-(1-2)-D-Gal, a glucoanalogue of tetrasaccharide Ley alpha-L-Fucp-(1-2)-beta-D-Galp-(1-4)-[alpha-L-Fucp-(1-3)]-D-Glc, and 6-fucosyl-N-acetylglucosamine, a fragment of core of the N-glycans family (Ka 1.1-1.7 x 10(3) M(-1)). The lowest binding was observed for L-fucose (Ka = 2.7 x 10(2) M-1) and trisaccharide Lea, (3-Galp-(1-3)-[a-L-Fucp-(1-4)]-GlcNAc (Ka = 6.4 x 10(2) M(-1)). The Lea, Lea, and Lex pentasaccharides and Leb hexasaccharide were not bound to LABA.  相似文献   

13.
Two different oligosaccharides were obtained from the Smith degradation of the O-polysaccharide isolated from the lipopolysaccharide of Salmonella Dakar. The structures of these oligosaccharides were investigated by chemical analysis, NMR spectroscopy and MALDI-TOF mass spectrometry. The following structures of these products were determined: alpha-D-GalpNAc-(1-->4)-alpha-D-Quip3NAc-(1-->3)-alpha-L-Rhap-(1-->2)-threitol and [FORMULA: SEE TEXT] where Quip3NAc is 3-acetamido-3,6-dideoxyglucose. The reaction products confirmed the structure of the repeating unit of the Salmonella Dakar O-polysaccharide reported previously [Kumirska, J.; Szafranek, J.; Czerwicka, M.; Paszkiewicz, M.; Dziadziuszko, H.; Kunikowska, D.; Stepnowski, P. Carbohydr. Res. 2007,342, 2138-2143].  相似文献   

14.
The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->3)-alpha-D-GlcNAcp-(1--> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1-->3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A' and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1-->2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.  相似文献   

15.
The isomeric sialyl-Lea-terminating pentasaccharide derivatives, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]-beta- D-GlcpNAc-(1----3)-beta-D-Galp-O(CH2)8COOMe and alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]- beta-D-GlcpNAc-(1----6)-beta-D-Galp-O(CH2)8COOMe, have been prepared by the action in sequence of a porcine submaxillary (2----3)-alpha-sialyltransferase and a human-milk (1----3/4)-alpha-fucosyltransferase on the chemically synthesized trisaccharides beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)- and -(1----6)-beta-D-Galp- O(CH2)8COOMe, respectively.  相似文献   

16.
The immunodominant part in the O-antigenic polysaccharide from Escherichia coli O128 was immunologically characterized by an enzyme-linked immunosorbent assay (ELISA). The antibody specificity was determined by the inhibitory effects of the methyl glycosides of constituent mono- and oligosaccharides synthesized related to the O-antigenic polysaccharide from E. coli O128. It was found that methyl alpha-L-fucopyranoside was the most effective inhibitor amongst the monosaccharides while the highest antibody specificity was directed towards the trisaccharide with the structure: beta-D-GalpNAc-(1-->6)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-1-->OMe suggesting that the monospecific antibody has the extended combining site.  相似文献   

17.
Four new triterpenoid saponins were isolated from the leaves and stem of branches of Dizygotheca kerchoveana along with seven known ones. The new saponins were respectively characterized as 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid, 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D-3-O-trans-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester and 3-O-[beta-d-3-O-cis-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester. Their structures were elucidated by 1D and 2D NMR experiments, FAB-MS as well as chemical means.  相似文献   

18.
The steric obstruction model, that describes the enhanced alignment of folded proteins by anisotropic medium, is extended to account for the residual dipolar couplings of chain-like polypeptides. The average alignment of each chain segment is calculated from an ensemble of conformations represented by a spatial probability distribution. The segmental alignment depends on chain length, flexibility and segment's position in the chain. Residual dipolar couplings in turn depend on internuclear vector directions within each fragment. The results of calculations and simulations explain salient features of the experimental data. With this insight residual dipolar couplings can be interpreted to assess the degree of denaturation, local structures and spatial organization of weakly structured proteins.  相似文献   

19.
Six triterpenoid saponins were isolated from the stem bark of Pometia ridleyi along with two known saponins, acutoside A and calenduloside C. Their structures were established using one- and two-dimensional NMR and mass spectrometry as 3-O-beta-D-apiofuranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-alpha-L-arabinopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-, 3-O-alpha-L-arabinopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-, 3-O-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-, 3-O-beta-D-apiofuranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl-oleanolic acid. The EtOH and EtOAc extracts of the stem bark showed no cytotoxic activity. At a concentration of 23 microg/ml, the saponin mixture showed haemolytic activity and caused 50% haemolysis of a 10% suspension of sheep erythrocytes.  相似文献   

20.
Five saponins from the root bark of Aralia elata   总被引:1,自引:0,他引:1  
Five saponins, 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-oleanolic acid 28-O-beta-D-glucopyranosyl ester (aralia-saponin V), 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-echinocystic acid 28-O-beta-D-glucopyranosyl ester (aralia-saponin VI), 3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-hederagenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin VII), 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl]-caulophyllogenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin VIII), 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl(1-->3)]-alpha-L-arabinopyranosyl]-hederagenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin IX), were isolated from the root bark of Aralia elata (Miq.) Seem., together with four known compounds. Their structures were determined on the basis of chemical and spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号