首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have performed genome-wide expression profiling of endocrine regulation of genes expressed in the mouse initial segment (IS) and distal caput of the epididymis by using Affymetrix microarrays. The data revealed that of the 15 020 genes expressed in the epididymis, 35% were enriched in one of the two regions studied, indicating that differential functions can be attributed to the IS and the more distal caput regions. The data, furthermore, showed that 27% of the genes expressed in the IS and/or distal caput epididymidis are under the regulation of testicular factors present in the duct fluid, while bloodborne androgens can regulate for 14% of them. This is in line with the high testis dependency of epididymal physiology. We then focused on genes with moderate or strong expression, showing strict segment enrichment and strong dependency on testicular factors. Analyses of the 59 genes, including upregulated and downregulated genes, fulfilling the criteria indicated that the expression of 18 (17 downregulated genes; 1 upregulated gene) of 19 gonadectomy-responsive genes enriched in the IS was not maintained by the androgen treatment, whereas the expression of all six downregulated genes enriched in the distal caput and the majority of those with no strict segment enrichment of expression (28 of 34; consisting of 23 downregulated and 5 upregulated genes) were maintained by androgens. Hence, it is evident that testicular factors other than androgens are important for the expression of IS-enriched genes, whereas the expression of distal caput-enriched genes is typically regulated by androgens. Identical data were obtained by independent clustering analyses performed for the expression data of 3626 epididymal genes. Several novel genes with putative involvement in epididymal sperm maturation, such as a disintegrin and metallopeptidase domain 28 (Adam28) and a solute carrier organic anion transporter family, member 4C1 (Slco4c1), were identified, indicating that this approach is successful for identifying novel epididymal genes.  相似文献   

3.
4.
5.
6.
Dynamic changes in gene expression along the rat epididymis   总被引:6,自引:0,他引:6  
  相似文献   

7.
The Golgi apparatus is enriched in specific enzymes involved in the maturation of carbohydrates of glycoproteins. Among them, alpha-mannosidases IA, IB and II are type II transmembrane Golgi-resident enzymes that remove mannose residues at different stages of N-glycan maturation. alpha-Mannosidases IA and IB trim Man9GlcNAc2 to Man5GlcNAc2, while alpha-mannosidase II acts after GlcNAc transferase I to remove two mannose residues from GlcNAcMan5GlcNAc2 to form GlcNAcMan3GlcNAc2 prior to extension into complex N-glycans by Golgi glycosyltransferases. The objective of this study is to examine the expression as well as the subcellular localization of these Golgi enzymes in the various cells of the male rat reproductive system. Our results show distinct cell-and region-specific expression of the three mannosidases examined. In the testis, only alpha-mannosidase IA and II were detectable in the Golgi apparatus of Sertoli and Leydig cells, and while alpha-mannosidase IB was present in the Golgi apparatus of all germ cells, only the Golgi apparatus of steps 1-7 spermatids was reactive for alpha-mannosidase IA. In the epididymis, principal cells were unreactive for alpha-mannosidase II, but they expressed alpha-mannosidase IB in the initial segment and caput regions, and alpha-mannosidase IA in the corpus and cauda regions. Clear cells expressed alpha-mannosidase II in all epididymal regions, and alpha-mannosidase IB only in the caput and corpus regions. Ultrastructurally, alpha-mannosidase IB was localized mainly over cis saccules, alpha-mannosidase IA was distributed mainly over trans saccules, and alpha-mannosidase II was localized mainly over medial saccules of the Golgi stack. Thus, the cell-specific expression and distinct Golgi subcompartmental localization suggest that these three alpha-mannosidases play different roles during N-glycan maturation.  相似文献   

8.
We employed RT-PCR followed by light microscope immunocytochemistry on St. Marie's- and Bouin's-fixed tissues to define the distribution of carbonic anhydrase (CA) isoforms in the male reproductive tract. The data revealed that CA II, III, IV, XII, and XIV were expressed in rat epididymis. Whereas CA III was found in principal cells of all epididymal regions, CA II was localized in narrow cells of the initial segment and principal cells of all regions. CA XII expression was most intense in the corpus and proximal cauda regions, where it appeared over the basolateral plasma membranes of principal cells. Narrow cells of the initial segment also revealed intense reactions, as did basal cells of the corpus and proximal cauda regions. Principal cells of the initial segment and proximal caput regions showed diffuse apical cytosolic reactions and occasional basolateral staining for CA XIV, whereas principal cells of distal regions showed more diffuse cytosolic reactions highlighting both apical and basal regions of the cell, with basal cells also being reactive. These data suggest subtle differences in cell type and subcellular- and region-specific distributions for CAs in their role of fine-tuning pH in the lumen, cell cytosol, and intervening intercellular spaces of the epididymis.  相似文献   

9.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
To examine epididymal function, we attempted to identify highly expressed genes in mouse epididymis using a cDNA microarray containing PCR products amplified from a mouse epididymal cDNA library. We isolated one novel and four known genes-lymphocyte cytosolic protein 1 (Lcp1), complement subcomponents C1r/C1s, Uegf protein, and bone morphogenetic protein and zona pellucida-like domains 1 (Cuzd1), transmembrane epididymal protein 1 (Teddm1), and whey acidic protein 4-disulfide core domain 16 (Wfdc16)-with unknown functions in the epididymis. The novel gene, designated Serpina1f (serine peptidase inhibitor [SERPIN], clade A, member 1f), harbors an open reading frame of 1 233 bp encoding a putative protein of 411 amino acids, including a SERPIN domain. These five genes were predominantly expressed in the epididymis as compared to other organs. In situ hybridization analysis revealed their epididymal region-specific expression patterns. Real-time RT-PCR analysis revealed a significant increase in mRNA expression of these genes around puberty. Castration decreased their expression, except forLcp1. Testosterone (T) restored these reduced expressions, except forTeddm1; however, this restoration was not observed with 17 beta-estradiol (E2). Administration of T and E2 combination recovered the Serpina1f mRNA concentration; this recovery was also observed with T alone. However, the recovery of Cuzd1and Wfdc16mRNA concentrations was inadequate. Neonatal diethylstilbestrol treatment suppressed the Cuzd1, Wfdc16, and Serpina1f mRNA expression in the epididymis of 8-week-old mice; this was not observed with E2. These results suggest that our microarray system can provide a novel insight into the epididymal function on a molecular basis, and the five genes might play important roles in the epididymis.  相似文献   

11.
Dihydrotestosterone (DHT), 5alpha-reduced metabolite of testosterone, is the most potent androgen in the epididymis. The conversion of T into DHT is carried out by 5alpha-reductase. The activity of 5alpha-reductase type 2, preferentially expressed in the epididymis can be inhibited by a finasteride (a steroid-based specific inhibitor of 5alpha-reductase type 2) which results in DHT deficiency. The aim of the study was to examine the morphology of epididymis and the immunolocalization of an androgen receptor (AR) in the initial segment, caput and cauda epididymis of rats treated with finasteride for 56 days. There were no morphological changes in the morphology of epididymal epithelium in the experimental rats. Immunostainable AR was localized in nuclei of epithelial cells, smooth muscle cells and mainly in the cytoplasm of interstitial cells in the epididymis of control rats. In the epididymis of experimental rats, AR immunostaining was noticed mainly in the cytoplasm of epithelial cells and interstitial cells. The single cells of the initial segment epithelium, basal cells and smooth muscle cells of cauda epididymis showed nuclear AR staining. In conclusion, finasteride affected the expression of the AR in the rat epididymis without changing the morphology of epididymal epithelium. Altered AR expression reflected the hormonal status within the epididymis.  相似文献   

12.
The epididymis is a useful model system to understand the mechanisms that govern region-specific gene expression, as many gene products display spatially restricted expression within this organ. However, surprisingly little is known about how this regulation is achieved. Here, we report regulatory sequences from the Pem homeobox gene that drive expression in different subregions of the mouse epididymis in vivo. We found that the 0.3-kb 5'-flanking sequence (region I) from the Pem proximal promoter (Pem Pp) was sufficient to confer androgen-dependent and developmentally regulated expression in the caput region of the epididymis. Expression was restricted to the normal regions of expression of Pem in the caput (segments 2-4), but there was also aberrant expression in the corpus region. This corpus misexpression was extinguished when 0.6 kb of Pem Pp 5'-flanking sequence was included in the transgene, indicating that one or more negative regulatory elements exist between 0.6 and 0.3 kb upstream of the Pem Pp start site (region II). When heterologous sequences were introduced upstream of the Pem Pp, expression was further restricted, mainly to caput segment 3, implying that the Pem Pp has segment-specific regulatory elements. To our knowledge, the regulatory regions we have identified are the shortest so far defined that dictate regionally localized expression in the epididymis in vivo. They may be useful for identifying the factors that regulate region-specific expression in the epididymis, for expressing and conditionally knocking out genes in different subregions of the epididymis, for treating male infertility, and for generating novel methods of male contraception.  相似文献   

13.
The gene encoding the opioid peptide precursor preproenkephalin is expressed at high levels in the initial segment of the adult rat epididymis. Expression is localized to principal cells, the secretory epithelial cells lining the epididymal duct. During development, epididymal proenkephalin mRNA levels show a pronounced increase at about 44 days of age, coincident with the initial entry of spermatozoa into the epididymal lumen. Hypophysectomy leads to a 60-fold decrease in epididymal proenkephalin mRNA levels. Testosterone replacement can prevent this decline in a manner consistent with an effect upon spermatogenesis. Castration studies demonstrate that a gonadal factor other than testosterone directly regulates epididymal proenkephalin expression, and the results of efferent duct ligation suggest that this factor must be supplied through an intact connection of the testis and epididymis. Proenkephalin mRNA levels in the epididymis correlate with the decline and reappearance of spermatozoa induced by the alkylating agent busulphan. Thus, the developmental profile of proenkephalin expression, coupled with the results of both surgical and pharmacological manipulations of the reproductive tract, indicate that spermatozoa, or a spermatozoa-associated factor, regulate proenkephalin gene expression in the epididymis.  相似文献   

14.
Region-specific gene expression in the epididymis   总被引:1,自引:0,他引:1  
The epididymis is responsible for post-testicular sperm maturation, which consists in the acquisition of forward motility and fertilizing ability. This organ is composed of three main anatomical regions - the caput, corpus and cauda epididymidis - which possess distinct gene expression profiles, ensuring different epididymal functions essential to the different steps of sperm maturation. Since many genes display spatially restricted expression in the epididymis, this organ constitutes a model of choice to study the mechanisms that govern region-specific gene expression. Factors such as steroid hormones, lumicrine factors and temperature affect the pattern of gene expression in the epididymis. Recently, the contribution of small RNAs in epididymal gene regulation has been investigated and constitutes a promising avenue for clinical application with regard to male fertility.  相似文献   

15.
Osteopontin (OPN), a multifunctional phosphoprotein found in both hard and soft tissues, was examined in the male reproductive tract. The expression and regulation of OPN in the rat testis, efferent ducts, and epididymis was examined during postnatal development through to adulthood using immunocytochemistry at the light- and electron-microscopic level. Immunoblot analysis revealed a major 30-kDa band for epididymal tissue and a major 60-kDa band for the testis. In the testis, immunostaining of OPN was noted in early germ cells from spermatogonia to early pachytene spermatocytes, suggesting a role for OPN as an adhesive protein binding these cells to the basement membrane and adjacent Sertoli cells. Nonciliated cells of the efferent ducts expressed OPN, whereas a cell- and region-specific distribution of OPN was observed in the epididymis. Reactivity of OPN in the apical region of the cell corresponded to labeling of microvilli, small endocytic vesicles, and endosomes, where OPN may serve to remove calcium from the epididymal lumen and, thus, prevent mineral accumulation and subsequent decrease in sperm fertility. Regulation and postnatal studies revealed that circulating androgens regulate OPN expression in principal cells of the epididymis only. Taken together, the data reveal cell- and region-specific expression and regulation of OPN in the epididymis.  相似文献   

16.
17.
18.
Endocytosis is an important event in the epididymis as it contributes to a luminal environment conducive for sperm maturation. Principal and clear cells contain numerous lysosomes which degrade many substances internalized by endocytosis from the epididymal lumen. The interior of the lysosomes depends on low pH to activate the release of their enzymes and to activate their acid hydrolases. In the present study, H+K+ATPase was localized by light microscopy in the adult rat epididymis of intact and of orchidectomized animals supplemented with testosterone or not. In normal animals, numerous lysosomes of nonciliated cells of the efferent ducts were intensely reactive for anti-H+K+ATPase antibody. In the initial segment, only a few lysosomes of principal cells were reactive. In the intermediate zone of the epididymis, numerous lysosomes of principal cells were intensely reactive, while the number of intensely reactive lysosomes decreased progressively from the proximal caput to the distal caput with none being seen in the proximal corpus region. In the distal corpus and cauda regions, only a few lysosomes of some principal cells were reactive. In contrast, clear cells of all regions showed intense reactivity. Orchidectomy resulted in the abolishion of H+K+ATPase in lysosomes of principal cells of all regions except the initial segment. However, while clear cells of the caput and corpus regions also became unreactive, those of the cauda region remained as reactive as in controls. Orchidectomized animals supplemented with testosterone maintained a staining pattern similar to controls for both cell types. These observations demonstrate the presence in principal and clear cells of H+K+ ATPase which may have an important role in acidifying the interior of their lysosomes. However, there is a region-specific expression of H+K+ATPase in lysosomes of principal cells, unlike that for clear cells. In addition, H+K+ATPase expression in lysosomes of principal cells depends on testosterone in all regions except the initial segment. However, in the case of clear cells, only those of the caput and the corpus regions are dependent on testosterone, while those of the cauda region appear to be regulated by some other factor.  相似文献   

19.
20.
Polyclonal antibody was used to partially characterize REP38, a major rabbit epididymal secretory protein. Western blot analyses and immunohistochemistry indicated that REP38 is only expressed in regions 5 and 6 of the epididymis (corpus epididy-midis) and is localized in the supranuclear region and microvilli of the principal cells in these regions. It was not expressed in other tissues of the body. In region 8 (cauda epididymidis), REP38 was detected in the luminal border and cytoplasm of scattered principal cells, indicating that it may be reabsorbed in this region. This protein accumulated on the sperm plasma membrane downstream of region 5 and was localized predominantly over the acrosomal and postacrosomal regions of the head and the middle piece. Although tightly bound to epididymal sperm, REP38 migrated to the equatorial segment under conditions in vivo that would promote capacitation. When tested in vitro, anti-REP38 IgG reduced the percentage of ova fertilized in a concentration-dependent manner, apparently by blocking sperm-egg fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号