首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood-borne lymphocytes extravasate in large numbers within peripheral lymph nodes (PN) and other secondary lymphoid organs. It has been proposed that the initiation of extravasation is based upon a family of cell adhesion molecules (homing receptors) that mediate lymphocyte attachment to specialized high endothelial venules (HEV) within the lymphoid tissues. A putative homing receptor has been identified by the monoclonal antibody, MEL-14, which recognizes an 80-90-kD glycoprotein on the surface of mouse lymphocytes and blocks the attachment of lymphocytes to PN HEV. In a companion study we characterize a carbohydrate-binding receptor on the surface of mouse lymphocytes that also appears to be involved in the interaction of lymphocytes with PN HEV. This receptor selectively binds to fluorescent beads derivatized with PPME, a polysaccharide rich in mannose-6-phosphate. In this report we examine the relationship between this carbohydrate-binding receptor and the putative homing receptor identified by the MEL-14 antibody. We found that: MEL-14 completely and selectively blocks the activity of the carbohydrate-binding receptor on mouse lymphocytes; the ability of six lymphoma cell lines to bind PPME beads correlates with cell-surface expression of the MEL-14 antigen, as well as PN HEV-binding activity; selection of lymphoma cell line variants for PPME-bead binding by fluorescence-activated cell sorting (FACS) produces highly correlated (r = 0.974, P less than 0.001) and selective changes in MEL-14 antigen expression. These results show that the carbohydrate-binding receptor on lymphocytes and the MEL-14 antigen, which have been independently implicated as receptors involved in PN-specific HEV attachment, are very closely related, if not identical, molecules.  相似文献   

2.
During the course of their recirculation through the body, blood-borne lymphocytes specifically adhere to high endothelial venules (HEV) within secondary lymphoid organs such as peripheral lymph nodes (PN) and gut-associated Peyer's patches (PP). This adherence event, which initiates the extravasation of the lymphocyte, is highly specific in terms of the class of lymphocyte and the anatomic location of the HEV. We review evidence that the lymphocyte adhesive molecule (homing receptor) involved in attachment to PN HEV is a carbohydrate-binding receptor (lectin-like) with specificity for mannose-6-phosphate (M6P)-like ligands. We describe the use of a novel cytochemical probe for the detection and characterization of cell surface carbohydrate-binding receptors. Using a M6P-based probe, we show that the carbohydrate-binding receptor on lymphocytes is closely-related or identical to the MEL-14 antigen, a putative homing receptor identified by a monoclonal antibody. Evidence is presented that the lymphocyte attachment sites on both PN and PP HEV are inactivated by mild periodate oxidation and hence are probably carbohydrate in nature. Yet, the sites are biochemically distinguishable in that one class (PN) requires sialidase-sensitive structures whereas the other (PP) does not. We raise the possibility that diversity in the carbohydrate-based recognition determinants on HEV may underlie the adhesive specificities in this system.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2757-2764
The entry of blood-borne lymphocytes into most secondary lymphoid organs is initiated by a highly specific adhesive interaction with the specialized cuboidal endothelial cells of high endothelial venules (HEV). The adhesive receptors on lymphocytes that dictate interactions with HEV in different lymphoid organs are called homing receptors, signifying their critical role in controlling organ-selective lymphocyte migration. Considerable work has established that the mouse peripheral lymph node homing receptor (pnHR), defined by the mAb MEL- 14, functions as a lectin-like adhesive protein. We have previously shown that sialidase treatment of peripheral lymph node (PN) HEV abrogates lymphocyte attachment to the HEV both in vivo and in vitro. We extend this evidence by demonstrating that Limax agglutinin (LA), a sialic acid-specific lectin, when reacted with HEV exposed in cryostat- cut tissue sections, blocks lymphocyte attachment to PN HEV and, unexpectedly, to the HEV of Peyer's patches (PP) as well. Using a recombinant form of the pnHR as a histochemical probe for its cognate adhesive site (HEV-ligand) on PN HEV, we demonstrate that both sialidase and Limax agglutinin functionally inactive this ligand. It is concluded that the requirement for sialic acid is at the level of the pnHR interaction with its HEV ligand. A distinct sialyloligosaccharide may encode the recognition determinant of a PP HEV ligand.  相似文献   

4.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

5.
Blood-borne lymphocytes initiate entry into secondary lymphoid organs, such as peripheral lymph nodes (PN) and gut-associated Peyer's patches (PP), by a highly specific adhesive interaction between the lymphocytes and the endothelium of specialized blood vessels known as a high endothelial venules (HEV). The selectivity with which functional subpopulations of lymphocytes migrate into particular lymphoid organs is believed to be regulated by the expression of cell adhesion receptors and complementary ligands on lymphocytes and HEV, respectively. The entry of lymphocytes into PN and PP has clearly been shown to involve distinct receptor-ligand pairs. Employing the Stamper-Woodruff in vitro adhesion assay, which measures lymphocyte attachment to HEV in cryostat-cut sections of lymphoid organs, we have previously shown that treatment of PN sections with two different sialidases inactivates HEV-adhesive ligands, whereas treatment of PP tissue sections has no effect on HEV-adhesive function. We now report that in vivo exposure of HEV to sialidase (after i.v. injection of the enzyme) also selectively prevents subsequent in vitro attachment of lymphocytes to PN HEV but not to PP HEV. Consistent with this organ-selective impairment of HEV-adhesive function by sialidase, i.v. injection of the enzyme is shown to prevent short term lymphocyte accumulation within peripheral lymph nodes while having no significant effect on accumulation in PP, blood, or nonlymphoid organs. Histologic examination with the sialic acid-specific lectin from Limax flavus verified that i.v. injected sialidase effectively removes stainable sialic acid moieties from HEV in both PN and PP. This study confirms that sialic acid is required for the adhesive function of PN HEV-ligands. A role for sialic acid as either a recognition determinant or as a regulatory molecule can be envisioned. In view of the fact that many pathogens release sialidase and cause substantially elevated serum levels of this enzyme, the present observations may have pathophysiologic significance. One mechanism by which such pathogens may avoid destruction is to inactivate susceptible HEV-ligands and disrupt the entry of lymphocytes into lymphoid organs where immune responses against the pathogens would normally be initiated.  相似文献   

6.
《The Journal of cell biology》1984,99(4):1535-1540
Normal and malignant lymphocytes can migrate from the bloodstream into lymph nodes and Peyer's patches. This process helps distribute normal lymphocytes throughout the lymphoid system and may provide a portal of entry for circulating malignant cells. An adhesive interaction between lymphocytes and the endothelium of postcapillary venules is the first step in the migratory process. We have recently shown that the simple sugars L-fucose and D-mannose, and an L-fucose-rich polysaccharide (fucoidin), can inhibit this adhesive interaction in vitro. We now report that mannose-6-phosphate, the structurally related sugar fructose-1-phosphate, and a phosphomannan, core polysaccharide from the yeast Hansenula holstii (PPME) are also potent inhibitors. Inhibitory activity was assessed by incubating freshly prepared suspensions of lymphocytes, containing the various additives, over air-dried, frozen sections of syngeneic lymph nodes at 7-10 degrees C. Sections were then evaluated in the light microscope for the binding of lymphocytes to postcapillary venules. Mannose-6-phosphate and fructose-1-phosphate were potent inhibitors of lymphocyte attachment (one-half maximal inhibition at 2-3 mM). Mannose-1-phosphate and fructose-6-phosphate had slight inhibitory activity, while glucose-1-phosphate, glucose-6- phosphate, galactose-1-phosphate, and galactose-6-phosphate had no significant activity (at 10 mM). In addition, the phosphomannan core polysaccharide was a potent inhibitor (one-half maximal inhibition at 10-20 micrograms/ml); dephosphorylation with alkaline phosphatase resulted in loss of its inhibitory activity. Preincubation of the lymphocytes, but not the lymph node frozen sections, with PPME resulted in persistent inhibition of binding. Neither the monosaccharides nor the polysaccharide suppressed protein synthesis nor decreased the viability of the lymphocytes. Furthermore, inhibitory activity did not correlate with an increase in negative charge on the lymphocyte surface (as measured by cellular electrophoresis). These data suggest that a carbohydrate-binding molecule on the lymphocyte surface, with specificity for mannose-phosphates and structurally related carbohydrates, may be involved in the adhesive interaction mediating lymphocyte recirculation.  相似文献   

7.
Previous in vitro studies suggest that recognition of phosphomannosyl structures by lymphocytes plays a central role in the binding of lymphocytes to high endothelial venules. However, the physiologic relevance of phosphomannosyl recognition in in vivo lymphocyte migration has not been established. This paper describes experiments that examined this question. It was demonstrated that the phosphomannan monoester core (PPME) from Pichia holstii, a potent inhibitor of peripheral node high endothelial venule interactions in vitro, was a very effective inhibitor of in vivo lymphocyte migration, as little as 39 micrograms/mouse significantly inhibiting popliteal lymph node entry. Furthermore, PPME exhibited a similar hierarchy of inhibition in vivo as previously reported in vitro, most effectively inhibiting entry of lymphocytes into popliteal lymph node, somewhat less effectively inhibiting mesenteric lymph node entry and being a relatively poor inhibitor of Peyer's patch entry. Additionally, PPME inhibited splenic entry of lymphocytes, and inhibition of lymphoid organ entry was accompanied by a substantial leukocytosis. Two additional mannose-containing compounds were found to modify lymphocyte migration, namely a well defined mannose containing pentasaccharide (PENT) with terminal mannose-6-phosphate (M6P) and an unphosphorylated yeast mannan. Both PENT and mannan induced leukocytosis and were particularly effective at inhibiting splenic entry of lymphocytes. In fact, detailed dose-response curves indicated that mannan was a much more potent inhibitor of splenic entry than PPME or PENT, whereas in lymph nodes PPME was the most effective inhibitor. Pretreatment of lymphocytes before injection with either PPME or mannan demonstrated that PPME could act at the lymphocyte level, whereas mannan probably acted at some other site. Collectively, these data suggest that different carbohydrate structures are involved in the entry of lymphocytes into different lymphoid organs, with mannose recognition playing an important role in splenic entry and recognition of M6P-like structures controlling lymph node entry. In contrast, it was found that mannose-and M6P-containing structures, unlike sulfated polysaccharides such as fucoidan, did not affect the subsequent positioning of lymphocytes within lymphoid organs.  相似文献   

8.
The human lymphocyte homing receptor LAM-1, like its murine counterpart MEL-14, functions as a mammalian lectin, and mediates the binding of leukocytes to specialized high endothelial cells in lymphoid organs (HEV). LAM-1 is a member of a new family of cell adhesion molecules, termed selectins or LEC-CAMs, which also includes ELAM-1 and PAD-GEM (GMP-140/CD62). To localize the regions of LAM-1 that are involved in cell adhesion, we developed chimeric selectins, in which various domains of PAD-GEM were substituted into LAM-1, and used these chimeric proteins to define the domain requirements for carbohydrate binding, and to localize the regions recognized by several mAb which inhibit the adhesion of lymphocytes to lymph node HEV. The binding of PPME or fucoidin, soluble complex carbohydrates that specifically define the lectin activity of LAM-1 and MEL-14, required only the lectin domain of LAM-1. The LAM1-1, LAM1-3, and LAM1-6 mAb each strongly inhibit the binding of lymphocytes to HEV in the in vitro frozen section assay, and defined three independent epitopes on LAM-1. Blocking of PPME or fucoidin binding by LAM1-3 indicated that this site is identical, or in close proximity, to the carbohydrate binding site, and analysis of the binding of LAM1-3 to chimeric selectins showed that the epitope detected by LAM1-3 is located within the lectin domain. Although the LAM1-6 epitope is also located in the lectin domain, LAM1-6 did not affect the binding of PPME or fucoidin. The LAM1-1 epitope was located in, or required, the EGF domain, and, importantly, binding of LAM1-1 significantly enhanced the binding of both PPME and fucoidin. These results suggest that adhesion mediated by LAM-1 may involve cooperativity between functionally and spatially distinct sites, and support previous data suggesting a role for the EGF domain of LAM-1 in lymphocyte adhesion to HEV.  相似文献   

9.
We are investigating the hypothesis that carbohydrate-binding molecules on the cell surface are involved in the recirculation of lymphocytes from the bloodstream into lymphoid organs. This phenomenon requires the specific attachment of circulating lymphocytes to the endothelial cells of postcapillary venules. Using an in vitro assay to measure the adhesive interaction between lymphocytes and postcapillary venules, we have found that L-fucose, D mannose, and the L-fucose-rich, sulfated polysaccharide fucoidin specifically inhibit this binding interaction. L-fucose shows stereo-selective inhibitory activity at concentrations greater than 18 mM while fucoidin produces 50% inhibition at approximately 1-5 X 10(-8) M. Fucoidin appears to interact with the lymphocyte, and not the postcapillary venule, to inhibit binding. These data suggest that cell surface carbohydrates (fucoselike) and carbohydrate-binding molecules (cell surface lectins) may contribute to the specific attachment of lymphocytes to postcapillary venules.  相似文献   

10.
The leukocyte adhesion molecule-1 (LAM-1, TQ=1, Leu-8) in humans, like its murine homologue, MEL-14, is the principal receptor that mediates the binding of leukocytes to high endothelial venules (HEV) of peripheral lymph nodes. In this study, several regions of the protein which mediate receptor function were identified by using a large panel of murine mAb reactive with LAM-1. Individual mAb reacted with LAM-1+ cells with characteristic intensities of immunofluorescence staining, and each bound both lymphocytes and neutrophils. Lymphocyte attachment to HEV was significantly inhibited by the binding of five mAb. In contrast, only two of these mAb were able to completely block the binding of phosphomannan monoester core complex from the yeast Hansenula holstii cell wall (PPME), a phosphomannan monoester core polysaccharide that serves as a soluble model of the natural ligand of LAM-1. Interestingly, the binding of two anti-LAM-1 mAb to cells induced a significant increase in PPME binding, reminiscent of the increase in receptor affinity observed after leukocyte activation. Antibody cross-blocking studies indicated that many of the functionally important epitopes were spatially distinct, and domain mapping indicated that they recognized distinct domains of LAM-1. The expression and function of these epitopes were further assessed by using a variety of animal species to further characterize the functionally relevant epitopes defined in these studies. At least some anti-LAM-1 mAb reacted with leukocytes from monkey, cow, rabbit, sheep, dog, cat, pig, and goat, but not from chicken, rat, or mouse. The reactivity of anti-LAM-1 mAb in several animal species correlated with the ability of leukocytes to bind PPME, and mAb that inhibited lymphocyte binding to HEV in man could also inhibit this function in rhesus monkey and dog. Thus, several LAM-1 epitopes are structurally and functionally well conserved throughout recent mammalian evolution, emphasizing an important role for LAM-1 in the regulation of leukocyte traffic.  相似文献   

11.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

12.
Three carbohydrate-binding proteins (Mr 35 000, 16 000 and 13 500) were isolated from extracts of mouse 3T3 fibroblasts by affinity chromatography on polyacrylamide beads to which was covalently bound the ligand 6-aminohexyl 4-beta-D-galactosyl-2-acetamido-2-deoxy-beta-D-glucopyranoside. None of these proteins bind to polyacrylamide beads coupled with either 6-aminohexanol or 6-aminohexyl beta-D-galactopyranoside. Therefore they appear to be carbohydrate-binding proteins specific for galactose-terminated glycoconjugates. A carbohydrate-binding protein was also purified from extracts of human foreskin fibroblasts. This protein (Mr 35000) may represent the human counterpart of the mouse protein of similar Mr and binding properties.  相似文献   

13.
The lymphocyte-high endothelial venule (HEV) cell interaction is an essential element of the immune system, as it controls lymphocyte recirculation between blood and lymphoid organs in the body. This interaction involves an 85-95-kD class of lymphocyte surface glycoprotein(s), CD44. A subset of lymphocyte CD44 molecules is modified by covalent linkage to chondroitin sulfate (Jalkanen, S., M. Jalkanen, R. Bargatze, M. Tammi, and E. C. Butcher. 1988. J. Immunol. 141:1615-1623). In this work, we show that removal of chondroitin sulfate by chondroitinase treatment of lymphocytes or incubation of HEV with chondroitin sulfate does not significantly inhibit lymphocyte binding to HEV, suggesting that chondroitin sulfate is not involved in endothelial cell recognition of lymphocytes. Affinity-purified CD44 antigen was, on the other hand, observed to bind native Type I collagen fibrils, laminin, and fibronectin, but not gelatin. Binding to fibronectin was studied more closely, and it was found to be mediated through the chondroitin sulfate-containing form of the molecule. The binding site on fibronectin was the COOH-terminal heparin binding domain, because (a) the COOH-terminal heparin-binding fragment of fibronectin-bound isolated CD44 antigen; (b) chondroitin sulfate inhibited this binding; and (c) finally, the ectodomain of another cell surface proteoglycan, syndecan, which is known to bind the COOH-terminal heparin binding domain of fibronectin (Saunders, S., and M. Bernfield. 1988. J. Cell Biol. 106: 423-430), inhibited binding of CD44 both to intact fibronectin and to its heparin binding domain. Moreover, inhibition studies showed that binding of a lymphoblastoid cell line, KCA, to heparin binding peptides from COOH-terminal heparin binding fragment of fibronectin was mediated via CD44. These findings suggest that recirculating lymphocytes use the CD44 class of molecules not only for binding to HEV at the site of lymphocyte entry to lymphoid organs as reported earlier but also within the lymphatic tissue where CD44, especially the subset modified by chondroitin sulfate, is used for interaction with extracellular matrix molecules such as fibronectin.  相似文献   

14.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

15.
During the process of lymphocyte recirculation, lymphocytes bind via L-selectin to sulfated sialyl-Lewisx (sLex)–containing carbohydrate ligands expressed on the surface of high endothelial venules (HEV). We have examined the expression of sLex on HEV using a panel of mAbs specific for sLex and sLex-related structures, and have examined the function of different sLex-bearing structures using an in vitro assay of lymphocyte rolling on HEV. We report that three sLex mAbs, 2F3, 2H5, and CSLEX-1, previously noted to bind with high affinity to glycolipid-linked sLex, vary in their ability to stain HEV in different lymphoid tissues and bind differentially to O-linked versus N-linked sLex on glycoproteins. Treatment of tissue sections with neuraminidase abolished staining with all three mAbs but slightly increased staining with MECA-79, a mAb to a sulfation-dependent HEV-associated carbohydrate determinant. Treatment of tissue sections with O-sialoglycoprotease under conditions that removed the vast majority of MECA-79 staining, only partially reduced staining with the 2F3 and 2H5 mAbs. Using a novel rolling assay in which cells bind under flow to HEV of frozen tissue sections, we demonstrate that a pool of O-sialoglycoprotease–resistant molecules is present on HEV that is sufficient for attachment and rolling of lymphocytes via L-selectin. This interaction is not inhibited by the mAb MECA-79. Furthermore, MECA-79 mAb blocks binding to untreated sections by only 30%, whereas the sLex mAb 2H5 blocks binding by ~60% and a combination of MECA-79 and 2H5 mAb blocks binding by 75%. We conclude that a pool of O-glycoprotease-resistant sLex-like L-selectin ligands exist on human HEV that is distinct from the mucin-associated moieties recognized by MECA-79 mAb. We postulate that these ligands may participate in lymphocyte binding to HEV.  相似文献   

16.
The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.  相似文献   

17.
Rat thoracic duct lymphocytes (TDL) are capable of selective adherence to the endothelium of high-endothelial venules (HEV) when overlaid onto glutaraldehyde-fixed sections of lymph nodes. The data presented indicate that lymphocyte adherence is an energy-dependent, calcium-requiring event that involves membrane determinants on TDL which are sensitive to trypsin. Surface sialic acids on lymphocytes are not essential and treatment of the cells with neuraminidase does not interfere with their attachment to HEV. There was no evidence that microtubule-associated functions play a role in binding. Adherence, however, is abolished by cytochalasin B, indicating that the cytoplasmic contractile microfilament system exerts an important effect. The results imply that lymphocyte surface membrane modulation is involved in the development of strong adhesive forces that bind the cells to the endothelium. In addition, lymphocyte-HEV adherence is reduced by ionophore A-23187, an agent known to inhibit surface membrane receptor movement. It is suggested that specific binding of recirculating lymphocytes to HEV is not a passive event, but that activation of cytoplasmic contractile forces in the lymphocyte is required for the formation of stable lymphocyte-HEV binding.  相似文献   

18.
Lymphocyte migration from the blood into the lymph nodes in most species occurs across post-capillary high endothelial venules (HEV). In a previous study, we proposed that lymphocyte extravasation involves receptor-mediated binding followed by adenylate cyclase-dependent activation of lymphocyte motility. This hypothesis was, in part, based on observations of in vitro lymphocyte adherence to HEV by employing pertussigen, which is a known inhibitor of lymphocyte recirculation. In vitro lymphocyte-HEV binding requires a cold (6 degrees C) incubation step and binding is poor to nil if the assay is attempted at room (23 degrees C) or physiologic temperature. We decided to investigate why this assay is temperature restricted, because of the possibility that pertussigen or fucoidin -treated lymphocytes might interact with HEV differently at higher temperatures. We now report that O.C.T. compound (OCT), the embedding matrix generally used to cut frozen lymph node sections, is toxic to lymphocytes at temperatures above 6 degrees C. Exclusion of OCT from the assay system will allow lymphocyte-HEV binding to occur at 23 degrees C and to a lesser extent at 37 degrees C. With this modified protocol, lymphocytes treated with either pertussigen, fucoidin , or neuraminidase were tested for adherence to HEV at 23 degrees C. No essential difference in binding properties was observed from what had been reported at 6 degrees C. In contrast, trypsin-treated lymphocytes that did not bind to HEV with the standard technique at 6 degrees C did adhere to a minimal extent to HEV at 23 degrees C using the modified procedure. We also report some preliminary work, using the modified assay, on in vitro lymphocyte-HEV binding of rat, rabbit, and guinea pig lymphocytes to sections of lymph nodes from the respective species.  相似文献   

19.
Lymphocyte migration from the blood into most secondary lymphoid organs is initiated by a highly selective adhesive interaction with the endothelium of specialized blood vessels known as high endothelial venules (HEV). The propensity of lymphocytes to migrate to particular lymphoid organs is known as lymphocyte homing, and the receptors on lymphocytes that dictate interactions with HEV at particular anatomical sites are designated "homing receptors". Based upon antibody blockade experiments and cell-type distribution studies, a prominent candidate for the peripheral lymph node homing receptor in mouse is the approximately 90-kD cell surface glycoprotein (gp90MEL) recognized by the monoclonal antibody MEL-14. Previous work, including sequencing of a cDNA encoding for this molecule, supports the possibility that gp90MEL is a calcium-dependent lectin-like receptor. Here, we show that immunoaffinity-purified gp90MEL interacts in a sugar-inhibitable manner with sites on peripheral lymph node HEV and prevents attachment of lymphocytes. Lymphocyte attachment to HEV in Peyer's patches, a gut-associated lymphoid organ, is not affected by gp90MEL. The results demonstrate that gp90MEL, as a lectin-like receptor, directly bridges lymphocytes to the endothelium.  相似文献   

20.
Summary The distribution of saccharides in pig lymph nodes, particularly on high-endothelial venule (HEV) endothelium and on lymphocytes in these vessels, was studied by examining the binding of fluorescent conjugates of 18 different lectins. Eight of the lectins, particularly with glycan specificity restricted to mannose and polyacetyllactosamine determinants, were found to bind with a high affinity to these structures. Competitive inhibition experiments revealed that polylactosamine-containing glycans were present on endothelia and lymphocytes using lectins from Lycopersicon esculentum and Solanum tuberosum, the latter lectin reacting with lymphocytes only when apparently adherent to the luminal endothelium. The absence on pig endothelium of the Ulex europaeus binding, shown by human endothelia due to the presence of certain fucose epitopes, was confirmed. Pig lymph-node endothelium, however, bound the fucose-specific lectin of Tetragonolobus purpureas, indicating the presence of fucose on pig endothelia in a different conformation to that seen on human endothelia. The results suggested that pig lymph-node HEV endothelium expressed a core fucosylated tri- or tetra-antennary complex glycan with polylactosamine extensions and expressing an Ley determinant.Abbreviations used BS-I Bandeiraea simplicifolia BS-I - BS-I-B B. simplicifolia isolectin B4 - BS-II B. simplicifolia, lectin II - FACS fluorescence-activated cell sorter - FITC fluorescein isothiocyanate - HEV high-endothelial venule - LN lymph node - MLR mixed lymphocyte reaction - PBS phosphate-buffered saline - PPME phosphomannan - UEA-I Ulex europeaus lectin I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号