首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The 350-residue amino acid sequence of the catalytic subunit of bovine cardiac muscle adenosine cyclic 3',5'-phosphate dependent protein kinase is described. The protein has a molecular weight of 40 862, which includes an N-tetradecanoyl (myristyl) group blocking the NH2 terminus and phosphate groups at threonine-197 and serine-338. Seven methionyl bonds in the S-carboxymethylated protein were cleaved with cyanogen bromide to yield eight primary peptides. These fragments, and subpeptides generated by cleavage with trypsin, pepsin, chymotrypsin, thermolysin, and Myxobacter AL-1 protease II, were purified and analyzed to yield the majority of the sequence. The primary peptides were aligned by analyses of overlapping peptides, particularly of methione-containing tryptic peptides generated after in vitro [14C]methyl exchange labeling of methionyl residues in the intact protein.  相似文献   

4.
J J Witt  R Roskoski 《Biochemistry》1975,14(20):4503-4507
Adenosine 3',5'-monophosphate (cAMP) dependent protein kinase (EC 2.7.1.37) catalyzes the phosphorylation of serine and threonine residues of a number of proteins according to the following chemical equation: ATP + protein leads to phosphoprotein + ADP. The DEAE-cellulose peak II holoenzyme from bovine brain, which is composed of regulatory and catalytic subunits, is resistant to ethoxyformic anhydride inactivation. After adding cAMP, the protein kinase becomes susceptible to ethoxyformic anhydride inhibition. Ethoxyformic anhydride (2mM) inhibits the enzyme 50% (5 min, pH 6.5, 30 degrees) in the presence of 10 muM cAMP, but less than 5% in its absence. The substrate, Mg2+-ATP, protects against inactivation suggesting that inhibition is associated with modification of the active site. Addition of regulatory subunit or Mg2+-ATP to the isolated catalytic subunit also prevents ethoxyformic anhydride inactivation. These results suggest that the regulatory subunit shields the active site of the catalytic subunit thereby inhibiting it. In contrast to the bovine brain or muscle DEAE-cellulose peak II holoenzyme, the bovine muscle peak I holoenzyme is susceptible to ethoxyformic anhydride inactivation in the absence of cAMP.  相似文献   

5.
M Y Yoon  P F Cook 《Biochemistry》1987,26(13):4118-4125
The pH dependence of kinetic parameters and inhibitor dissociation constants for the adenosine cyclic 3',5'-monophosphate dependent protein kinase reaction has been determined. Data are consistent with a mechanism in which reactants selectively bind to enzyme with the catalytic base unprotonated and an enzyme group required protonated for peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) binding. Binding of the peptide apparently locks both of the above enzyme residues in their correct protonation state. MgATP preferentially binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/KMgATP are pH independent. The V/K for Ser-peptide is bell-shaped with pK values of 6.2 and 8.5 estimated. The pH dependence of 1/Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/KSer-peptide, while the Ki for MgAMP-PCP increases from a constant value of 650 microM above pH 8 to a constant value of 4 mM below pH 5.5. The Ki for uncomplexed Mg2+ obtained from the Mg2+ dependence of V and V/KMgATP is apparently pH independent.  相似文献   

6.
R Qamar  M Y Yoon  P F Cook 《Biochemistry》1992,31(41):9986-9992
In order to define the overall kinetic mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit and also to elaborate the kinetic mechanism in the direction of peptide phosphorylation, we have determined its kinetic mechanism in the direction of MgADP phosphorylation. Studies of initial velocity as a function of uncomplexed Mg2+ (Mgf) in the absence and presence of dead-end inhibitors were used to define the kinetic mechanism. Data are consistent with the overall kinetic mechanism in the direction of MgADP phosphorylation being random with both the pathways allowed, i.e., the pathway in which MgADP binds to the enzyme prior to phosphorylated peptide and the pathway in which phosphorylated peptide binds to enzyme prior to MgADP. In addition, depending on the concentration of Mgf, one or the other pathway predominates. At low (0.5 mM) Mgf, the mechanism is steady-state ordered with the pathway in which phosphorylated peptide binds first being preferred; at high (10 mM) Mgf, the kinetic mechanism is equilibrium ordered, and the pathway in which MgADP binds first is preferred. This change in mechanism to equilibrium ordered at higher concentration of Mgf is due to an increase in affinity of the enzyme for MgADP and a decrease in affinity for the phosphorylated peptide. The Haldane relationship gives a Keq of 2 +/- 1 x 10(3) at pH 7.2, in agreement with the values obtained from 31P NMR (1.6 +/- 0.8 x 10(3)) and direct determination of reactant concentrations at equilibrium (3.5 +/- 0.6 x 10(3)).  相似文献   

7.
L J Chen  D A Walsh 《Biochemistry》1971,10(19):3614-3621
  相似文献   

8.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

9.
J Bubis  S S Taylor 《Biochemistry》1987,26(19):5997-6004
Photoaffinity labeling of the regulatory subunits of cAMP-dependent protein kinase with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has proved to be a very specific method for identifying amino acid residues that are in close proximity to the cAMP-binding sites. Each regulatory subunit contains two tandem cAMP-binding sites. The type II regulatory subunit (RII) from porcine heart was modified at a single site, Tyr-381 [Kerlavage, A., & Taylor, S.S. (1980) J. Biol. Chem. 255, 8483-8488]. When a proteolytic fragment of this RII subunit was photolabeled with 8-N3cAMP, two sites were covalently modified. One site corresponded to Tyr-381 and, thus, was analogous to the native RII. The other site of modification was identified as Tyr-196, which is not labeled in the native protein. Photoaffinity labeling was carried out in the presence of various analogues of cAMP that show a preference for one of the two tandem cAMP-binding sites. These studies established that the covalent modification of Tyr-381 was derived from 8-N3cAMP that was bound to the second cAMP-binding site (domain B) and that covalent modification to Tyr-196 was due to 8-N3cAMP that was bound to the first cAMP-binding site (domain A). These sites of covalent modification have been correlated with a model of each cAMP-binding site on the basis of the crystal structure of the catabolite gene activator protein (CAP), which is the major cAMP-binding protein in Escherichia coli.  相似文献   

10.
R N Armstrong  E T Kaiser 《Biochemistry》1978,17(14):2840-2845
The spectrophotometric titration of SH groups in adenosine 3',5'-monophosphate (cAMP) dependent protein kinase from bovine heart muscle with 5,5'-dithiobis(2-nitrobenzoic acid)(DTNB) is described. The holoenzyme (R2C2) contains 16 SH groups, 12 of which react with DTNB in the native enzyme. The SH groups are distributed 2 per catalytic (C) and 4 per regulatory (R) subunit. The binding of cAMP to the holoenzyme or isolated R subunit prevents the reaction of one SH group per R subunit. Modification of SH groups, however, has only a small effect on cAMP binding to R. Reaction of the C subunit with DTNB results in less than 95% loss of catalytic activity. The kinetics of the DTNB reaction and the reversal of the inactivation process by treatment with dithiothreitol suggest that the inactivation is associated with SH group modification. Inactivation studies with the holoenzyme show that: (1) the R subunit inhibits DTNG inactivation of the C subunit in the absence of cAMP; (2) the rate of inactivation of the dephosphoholoenzyme in the presence of cAMP is considerably faster than that of the free catalytic subunit; and (3) the rate of inactivation of the phosphoholoenzyme in the presence of cAMP is faster than that of the C subunit but slower than the dephosphoholoenzyme. The results are interpreted as evidence for a significant interaction of the R and C subunits in the presence of saturating concentrations of cAMP. This interaction is modulated by the state of phosphorylation of R. To account for the inactivation data, a short-lived ternary complex containing R, C, and cAMP is postulated to be in rapid equilibrium with the subunits.  相似文献   

11.
J Reed  V Kinzel 《Biochemistry》1984,23(7):1357-1362
The circular dichroism spectrum of the catalytic subunit of cAMP-dependent protein kinase was measured in the far-UV (190-240 nm) and near-UV (250-300 nm) region. Data from the far-UV spectra were processed with the CONTIN program for estimation of globular protein secondary structure [ Provencher , S. W. (1982) CONTIN (Version 2) User's Manual, European Molecular Biology Laboratory, Heidelberg, West Germany]. The composition of the protein determined by this method was 49 +/- 2% alpha-helix, 20 +/- 4% beta-sheet, and 31 +/- 3% remainder. This composition changes when the protein is allowed to bind Kemptide , a synthetic peptide substrate, with more than half of the disordered portion of the protein taking the form of beta-sheet. A certain portion of the alpha-helical structure also appears to move into a beta-sheet form. The near-UV CD spectrum of catalytic subunit shows changes in aromatic amino acid dichroism associated with substrate binding. These changes can be ascribed with a fair degree of certainty to alterations in the orientation of a tyrosine residue at the surface of the protein. These findings are discussed in terms of previous work on induced dichroism in this enzyme with regard to control mechanisms operating at the active site.  相似文献   

12.
K Takio  S B Smith  E G Krebs  K A Walsh  K Titani 《Biochemistry》1984,23(18):4200-4206
Evidence is presented that establishes the amino acid sequence of the regulatory subunit of type II cAMP-dependent protein kinase from bovine cardiac muscle. Complementary sets of overlapping peptides were generated primarily by tryptic digestion and by chemical cleavage at methionyl residues. The analysis was augmented by chemical cleavage at a single tryptophanyl residue and at three of the four aspartyl-proline bonds. Several large fragments generated by limited proteolysis contributed to the proof of structure. The subunit is a single chain of 400 residues corresponding to a molecular weight of 45 004. An amino-terminal segment of about 100 residues is believed to include the region responsible for oligomeric association. The remainder of the molecule consists of two tandem homologous domains, each of which is thought to bind a single molecule of cAMP. Comparison of the three domains with corresponding regions of the type I isozyme, of the Escherichia coli catabolite gene activator protein, and of cGMP-dependent protein kinase indicates extensive regions of homology and as much as 50% identity with the sequence of an internal segment of the type I isozyme.  相似文献   

13.
Several cyclic nucleotide derivatives with aminoalkyl side chains attached to the purine ring were synthesized and their interactions with adenosine 3',5'-monophosphate (cAMP) dependent protein kinase were studied before and after immobilization to CNBr-activated Sepharose 4B. The soluble N6-substituted derivatives were as effective as cAMP itself in activating protein kinase and were more effective than 8-substituted cAMP derivatives, whereas the 2-substituted cAMP derivatives and the cGMP derivatives were the least effective. All of the synthetic derivatives tested were poor substrates for beef heart phosphodiesterase being hydrolyzed at rates less than 2% for that of cAMP itself. Utilizing methodology developed to evaluate the affinity of protein kinase for immogilized cyclic nucleotides it was found that all of the immobilized cyclic nucleotides interacted with protein kinase in a biospecific manner as judged by the following criteria: (1) the immobilized cyclic nucleotides competed with cAMP for the binding sites on protein kinase; (2) the analogous spacer-arm did not compete; and (3) the effects of enzyme concentration, MgATP, and cleavage of the cyclic phosphate ring on the interactions of protein kinase with the immobilized cyclic nucleotides were the same as previously shown for free cAMP. In addition, the immobilized ligands were bound with the same order of effectiveness as the analogous soluble ligand. The observed Ka for the activation of 0.005 muM protein kinase by N6-H2N(CH2)2-cAMP was increased from 0.23 to 3 muM by the process of immobilization. This increase was unaffected by the coupling density and spacer-arm length. The observed Kb for 0.10 muM protein kinase binding to immobilized N6-H2N(CH2)2-cAMP was increased as the molecular sieving exclusion limit of the matrix used was decreased indicating that at least part of this decrease in apparent affinity upon immobilization is due to exclusion of the enzyme from a portion of the matrix and therefore of the immobilized ligand molecules.  相似文献   

14.
15.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

16.
In rabbit heart homogenates about 50% of the cAMP-dependent protein kinase activity was associated with the low speed particulate fraction. In homogenates of rat or beef heart this fraction represented approximately 30% of the activity. The percentage of the enzyme in the particulate fraction was not appreciably affected either by preparing more dilute homogenates or by aging homogenates for up to 2 h before centrifugation. The particulate enzyme was not solubilized at physiological ionic strength or by the presence of exogenous proteins during homogenization. However, the holoenzyme or regulatory subunit could be solubilized either by Triton X-100, high pH, or trypsin treatment. In hearts of all species studied, the particulate-bound protein kinase was mainly or entirely the type II isozyme, suggesting isozyme compartmentalization. In rabbit hearts perfused in the absence of hormones and homogenized in the presence of 0.25 M NaCl, at least 50% of the cAMP in homogenates was associated with the particulate fraction. Omitting NaCl reduced the amount of particulate-bound cAMP. Most of the particulate-bound cAMP was probably associated with the regulatory subunit in this fraction since approximately 70% of the bound nucleotide was solubilized by addition of homogeneous catalytic subunit to the particulate fraction. The amount of cAMP in the particulate fraction (0.16 nmol/g of tissue) was approximately one-half the amount of the regulatory subunit monomer (0.31 nmol/g of tissue) in this fraction. The calculated amount of catalytic subunit in the particulate fraction was 0.18 nmol/g of tissue. Either epinephrine alone or epinephrine plus 1-methyl-3-isobutylxanthine increased the cAMP content of the particulate and supernatant fractions. The cAMP level was increased more in the supernatant fraction, possibly because the cAMP level became saturating for the regulatory subunit in the particulate fraction. The increase in cAMP was associated with translocation of a large percentage of the catalytic subunit activity from the particulate to the supernatant fraction. The distribution of the regulatory subunit of the enzyme was not significantly affected by this treatment. The catalytic subunit translocation could be mimicked by addition of cAMP to homogenates before centrifugation. The data suggest that the regulatory subunit of the protein kinase, at least that of isozyme II, is bound to particulate material, and theactive catalytic subunit is released by formation of the regulatory subunit-cAMP complex when the tissue cAMP concentration is elevated. A model for compartmentalized hormonal control is presented.  相似文献   

17.
C T Kong  P F Cook 《Biochemistry》1988,27(13):4795-4799
Isotope partitioning beginning with the binary E.MgATP and E.N-acetyl-Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ser-peptide) complexes indicates that the kinetic mechanism for the adenosine 3',5'-monophosphate dependent protein kinase is steady-state random. A total of 100% of the initial radioactive E.MgATP complex is trapped as phospho-Ser-peptide at infinite Ser-peptide concentration at both low and high concentration of uncomplexed Mg2+, suggesting that the off-rate of MgATP from the E.MgATP.Ser-peptide complex is slow relative to the catalytic steps. Km for Ser-peptide in the trapping reaction decreases from 17 microM at low Mg2+ to 2 microM at high Mg2+, indicating that Mg2+ decreases the off-rate for MgATP from the E.MgATP complex. A total of 100% of the radioactive E.Ser-peptide complex is trapped as phospho-Ser-peptide at low Mg2+, but only 40% is trapped at high Mg2+ in the presence of an infinite concentration of MgATP, suggesting that the off-rate for Ser-peptide from the central complex is much less than catalysis at low but not at high Mg2+. In support of this finding, the Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly (Ala-peptide) increases from 0.27 mM at low Mg2+ to 2.4 mM at high Mg2+. No trapping was observed at either high or low Mg2+ for the E.MgADP complex up to a phospho-Ser-peptide concentration of 5 mM. Thus, it is likely that in the slow-reaction direction the kinetic mechanism is rapid equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
Guanosine cyclic 3',5'-monophosphate (cGMP) dependent protein kinase is inactivated by o-phthalaldehyde. The loss of phosphotransferase activity following treatment with o-phthalaldehyde was rapid, and the second-order rate constant at 25 degrees C and pH 7.3 was 35 M-1 s-1. The inactivation reaction did not follow saturation kinetics. The cGMP-dependent protein kinase was protected from inactivation by its substrates, MgATP and Ser-peptide. Fluorescence excitation and emission spectroscopic data showed that an isoindole derivative was formed following the reaction between cGMP-dependent protein kinase and o-phthalaldehyde. Four moles of isoindole per mole of the cGMP-dependent protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. In the absence of cGMP, the protein kinase lost only 50% of its cGMP binding activity while there was almost a complete loss of its phosphotransferase activity. Studies in the presence of 20 microM cGMP, however, showed that about 2 mol of isoindole groups per mole of the protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. The second-order rate constant for inactivation of cGMP-dependent protein kinase by o-phthalaldehyde in the presence of 20 microM cGMP was 40 M-1 s-1. Fluorescence measurements of samples containing inactivated, iodoacetamide-modified, or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified, cGMP-dependent protein kinase and o-phthalaldehyde showed that the intensity of fluorescence in each case was about 50% of that obtained from unmodified, active cGMP-dependent protein kinase and o-phthalaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号