首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Abstract Rapid establishment by aggressive plants such as Phalaris arundinacea (reed canarygrass) often interferes with sedge meadow establishment in restored prairie pothole wetlands in the mid‐continental United States. Introducing a cover crop during community establishment might suppress P. arundinacea invasion in restored prairie potholes by reducing resource availability. We evaluated two potential cover crops, Echinochloa crusgalli (barnyardgrass) and Polygonum lapathifolium (nodding smartweed), for suppressing P. arundinacea invasion in an experimental wetland using replacement series competition experiments. Further, we assessed the effects of E. crusgalli and P. lapathifolium on sedge meadow establishment by sowing Carex hystericina, a common wetland sedge, as a third species at a constant density in the replacement experiments. Echinochloa crusgalli, compared with no cover crop, reduced P. arundinacea biomass by more than 1,000 g/m2 (65%) after two growing seasons. Polygonum lapathifolium did not affect P. arundinacea biomass. Dense E. crusgalli canopies in the first year and thick E. crusgalli thatch in the second year substantially reduced light availability for P. arundinacea establishment. Echinochloa crusgalli also reduced C. hystericina biomass by more than 1,800 g/m2 (99%) after two growing seasons. Carex hystericina biomass was similar in plots sown with E. crusgalli to P. arundinacea monocultures. Neither E. crusgalli nor P. lapathifolium is likely to improve sedge meadow restoration success. These trends were not sensitive to initial sowing density or elevation above water level. Without methods to suppress P. arundinacea invasions, sedge meadow restorations may often fail. Thorough site preparation to remove P. arundinacea propagule sources before restoration is essential.  相似文献   

2.
3.
4.
Invasive species pose a serious threat to native plant communities and are an important contributor to loss of biodiversity. In the case of Phalaris arundinacea, L. (Poaceae), reed canary grass, a cool-season, long-lived perennial plant native to Eurasia and North America, nonnative agronomically important genotypes were introduced to North America for numerous uses such as forage and soil stabilization. Following repeated introductions, reed canary grass became an aggressive invader that takes over natural wet prairies, stream-banks and wetlands. Reed canary grass can outcompete native plant species, resulting in monospecific stands with concomitant loss of plant and insect diversity and ultimately to alteration in ecosystem function. Abiotic factors such as disturbance, changes in hydrological regime, and particularly nutrient runoff to wetlands can enhance reed canary grass establishment and vegetative spread. In addition, the species' capacity for early season growth, rapid vegetative spread, high stem elongation potential, wide physiological tolerance, and high architectural plasticity make the species highly aggressive under a wide range of ecological conditions. The change in life-history and environmental conditions responsible for the enhanced aggressiveness observed between native and invasive genotypes are not yet understood. Hence, reed canary grass provides an ideal study system to test a number of ecological and genetic hypotheses to explain why some plant species become extremely aggressive when transported into a new geographical area. To date, genetic studies have found that invasive populations have high genetic diversity and that genotypes differ in their phenotypic plasticity and response to ecological conditions, which may contribute to their invasion success. Finally comparative studies currently underway on European native and American invasive genotypes of reed canary grass should shed light on the mechanisms responsible for reed canary grass's aggressiveness and should provide an experimental protocol to test ecological and genetic hypotheses about what makes a species invasive.  相似文献   

5.
6.
7.
Nitrogen (N) deposition is widely considered an environmental problem that leads to biodiversity loss and reduced ecosystem resilience; but, N fertilization has also been used as a management tool for enhancing primary production and ground cover, thereby promoting the restoration of degraded lands. However, empirical evaluation of these contrasting impacts is lacking. We tested the dual effects of N enrichment on biodiversity and ecosystem functioning at different organizational levels (i.e., plant species, functional groups, and community) by adding N at 0, 1.75, 5.25, 10.5, 17.5, and 28.0 g N m?2 yr?1 for four years in two contrasting field sites in Inner Mongolia: an undisturbed mature grassland and a nearby degraded grassland of the same type. N addition had both quantitatively and qualitatively different effects on the two communities. In the mature community, N addition led to a large reduction in species richness, accompanied by increased dominance of early successional annuals and loss of perennial grasses and forbs at all N input rates. In the degraded community, however, N addition increased the productivity and dominance of perennial rhizomatous grasses, with only a slight reduction in species richness and no significant change in annual abundance. The mature grassland was much more sensitive to N‐induced changes in community structure, likely as a result of higher soil moisture accentuating limitation by N alone. Our findings suggest that the critical threshold for N‐induced species loss to mature Eurasian grasslands is below 1.75 g N m?2 yr?1, and that changes in aboveground biomass, species richness, and plant functional group composition to both mature and degraded ecosystems saturate at N addition rates of approximately 10.5 g N m?2 yr?1. This work highlights the tradeoffs that exist in assessing the total impact of N deposition on ecosystem function.  相似文献   

8.
郭二辉  方晓  马丽  杨小燕  杨喜田 《生态学报》2020,40(11):3785-3794
弃耕地撂荒是土壤与植被向自然方向进行的次生演替,研究河岸带土壤撂荒后碳氮磷生态化学计量特征,是恢复和重建由农田干扰导致的退化河岸带生态系统的重要科学基础之一。以河岸带农地为对照,不同撂荒年限(撂荒2年、撂荒8年、撂荒10年)的土壤为研究对象,探索不同撂荒年限对土壤碳、氮、磷含量及相互关系的影响。结果表明:(1)土壤有机碳、氮的含量均呈现撂荒10年>撂荒8年>农田>撂荒2年;土壤中磷含量呈现撂荒10年>撂荒8年>撂荒2年>农田;农田和各撂荒年限的土壤碳、氮、磷含量,均随着土层深度的增加而呈降低的规律,但土壤碳和氮差异的显著性比磷明显。(2)河岸带土壤中C/N、C/P的均值均呈现:撂荒10年>农田>撂荒8年>撂荒2年趋势。N/P的均值呈现:撂荒10年(0.78)>农田(0.77)>撂荒8年(0.77)>撂荒2年(0.67),表明N是本研究区河岸带植被恢复的限制性营养元素。(3)河岸带农田和不同撂荒年限土壤碳、氮含量均存在极显著的耦合线性关系,而碳与磷、氮与磷之间的线性拟合程度相对较低。(4)在农田撂荒演替的初期阶段(2...  相似文献   

9.
10.
Dioscorea bulbifera, an Asian vine, is invasive in the southeastern USA. It rarely flowers but propagates from potato-like bulbils formed in leaf axils, which persist into the subsequent growing season. Lilioceris cheni Gressitt and Kimoto, a foliage-feeding beetle (Coleoptera: Chrysomelidae: Criocerinae) from Nepal, had been tested, proven to be a specialist and approved for release as a biological control agent. Regulatory delays, however, resulted in the demise of quarantine-held colonies, and acquisition of new Nepalese stock proved untenable. Searches then undertaken in southern China resulted in the collection of over 300 similar beetles. Two Chinese Lilioceris species were identified: one confirmed to be L. cheni and the other identified as Lilioceris egena (Weise). Mitochondrial analysis revealed an exact DNA match between some Chinese and one of the two Nepalese c oxidase subunit I haplotypes and all Chinese L. cheni haplotypes clustered as a single species but the comingling of the two species aroused concerns over possible hybridisation. These concerns were allayed by nuclear D2 analysis showing the absence of dual parental sequences. Nonetheless, diligence was exercised to ensure that the Chinese strains were safe to release. Abridged host testing using critical test species verified specificity. Caged releases during autumn 2011 documented the ability of adult beetles to overwinter in south Florida despite a prolonged lack of foliage. Open releases the following year produced vigorous populations that caused extensive defoliation. Preliminary observations indicate that L. cheni now contributes to the control of D. bulbifera and the bulbil-feeding L. egena should complement these effects if its host range proves appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号