首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The association between particular major histocompatibility complex class I (MHC-I) alleles and control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication implies that certain CD8(+) T-lymphocyte (CD8-TL) responses are better able than others to control viral replication in vivo. However, possession of favorable alleles does not guarantee improved prognosis or viral control. In rhesus macaques, the MHC-I allele Mamu-B*17 is correlated with reduced viremia and is overrepresented in macaques that control SIVmac239, termed elite controllers (ECs). However, there is so far no mechanistic explanation for this phenomenon. Here we show that the chronic-phase Mamu-B*17-restricted repertoire is focused primarily against just five epitopes-VifHW8, EnvFW9, NefIW9, NefMW9, and env(ARF)cRW9-in both ECs and progressors. Interestingly, Mamu-B*17-restricted CD8-TL do not target epitopes in Gag. CD8-TL escape variation occurred in all targeted Mamu-B*17-restricted epitopes. However, recognition of escape variant peptides was commonly observed in both ECs and progressors. Wild-type sequences in the VifHW8 epitope tended to be conserved in ECs, but there was no evidence that this enhances viral control. In fact, no consistent differences were detected between ECs and progressors in any measured parameter. Our data suggest that the narrowly focused Mamu-B*17-restricted repertoire suppresses virus replication and drives viral evolution. It is, however, insufficient in the majority of individuals that express the "protective" Mamu-B*17 molecule. Most importantly, our data indicate that the important differences between Mamu-B*17-positive ECs and progressors are not readily discernible using standard assays to measure immune responses.  相似文献   

2.
Human and simian immunodeficiency viruses (HIV/SIV) exhibit enormous sequence heterogeneity within each infected host. Here, we use ultradeep pyrosequencing to create a comprehensive picture of CD8+ T-lymphocyte (CD8-TL) escape in SIV-infected macaques, revealing a previously undetected complex pattern of viral variants. This increased sensitivity enabled the detection of acute CD8-TL escape as early as 17 days postinfection, representing the earliest published example of CD8-TL escape in intrarectally infected macaques. These data demonstrate that pyrosequencing can be used to study the evolution of CD8-TL escape during immunodeficiency virus infection with an unprecedented degree of sensitivity.Rapid sequence evolution is a hallmark of immunodeficiency virus infection and represents a major obstacle toward the development of a successful human immunodeficiency virus (HIV) vaccine (2, 3). Viral evolution has implications for HIV treatment and provides critical information about host immune responses. Although the viral population contains an enormous amount of sequence diversity, standard sequencing methods are limited to the detection of high-frequency variants. Techniques that permit characterization of rare variants, such as molecular cloning, single-genome amplification, or quantitative RT-PCR, are either labor intensive or restricted to the detection of a single variant, limiting their widespread use (9, 11, 12, 18). As a result, the functional consequences of low-frequency variants and subtle differences in the kinetics of viral evolution are not well understood.CD8+ T lymphocytes (CD8-TL) play a critical role in the suppression of immunodeficiency viruses and are a driving force in HIV/SIV (simian immunodeficiency virus) viral evolution (7, 8, 15, 20). Because the emergence of escape mutations within CD8-TL epitopes alters the recognition of infected cells, monitoring viral variation within epitopes has important implications (10, 16). Due to the sequencing limitations noted above, studies of CD8-TL escape are generally limited to the detection of high-frequency variants. As a result, CD8-TL escape is frequently viewed as a binary event: an epitope is either wild type or escaped.In this study, we applied ultradeep pyrosequencing to evaluate acute CD8-TL escape in SIV-infected macaques. We validated this method by sequencing the Tat28-35SL8 (SL8) epitope in eight Indian rhesus macaques, demonstrating the ability to detect amino acid variants with a frequency as low as 1%. We then examined Nef103-111RM9 (RM9) viral escape in four Mauritian cynomolgus macaques (MCMs), demonstrating that viral escape within RM9 occurs as early as 17 days postinfection. Pyrosequencing detected a considerable heterogeneity in the diversity, frequency, and kinetics of viral variation between animals that was undetectable by conventional methods. This exceptional variability is present in the viral population until at least 20 weeks postinfection. These studies demonstrate that ultradeep pyrosequencing is a high-throughput method that can be used to sensitively detect and characterize CD8-TL escape variants in any given epitope.  相似文献   

3.
In order to understand the impact of overlapping reading frames on natural selection by host CD8+ T lymphocytes (CD8(+)-TL), we analyzed the pattern of nucleotide substitution in simian immunodeficiency virus (SIV) genomes sampled from populations at time of death in 35 rhesus monkeys. Both the mean number of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and the mean number of synonymous nucleotide substitutions per synonymous site (d(S)) were elevated in overlap regions in comparison to non-overlap regions. Mean d(N) exceeded mean d(S) in CD8(+)-TL epitopes restricted by the host's class I major histocompatibility complex molecules. This pattern, which is indicative of positive Darwinian selection favoring amino acid changes in these epitopes, was seen in both overlap and non-overlap regions; but mean d(N) was particularly elevated in restricted CD8(+)-TL epitopes encoded in overlap regions. Amino acid changes from the inoculum were defined as parallel if the same amino acid change occurred at the same site independently in two or more monkeys, and a surprisingly high proportion (71.9%) of observed amino acid changes throughout the SIV genome occurred in parallel in different monkeys. The proportion of parallel changes in restricted epitopes encoded by overlapping reading frames was still higher (80%), supporting the hypothesis that the interaction of positive selection and overlapping reading frames enhances the probability of convergent or parallel amino acid change.  相似文献   

4.
Deep sequencing technology is revolutionizing our understanding of HIV/SIV evolution. It is known that acute SIV sequence variation within CD8 T lymphocyte (CD8-TL) epitopes is similar among MHC-identical animals, but we do not know whether this persists into the chronic phase. We now determine whether chronic viral variation in MHC-identical animals infected with clonal SIV is similar throughout the entire coding sequence when using a sensitive deep sequencing approach. We pyrosequenced the entire coding sequence of the SIV genome isolated from a unique cohort of four SIVmac239-infected, MHC-identical Mauritian cynomolgus macaques (MCM) 48 weeks after infection; one MCM in the cohort became an elite controller. Among the three non-controllers, we found that genome-wide sequences were similar between animals and we detected increased sequence complexity within 64% of CD8-TL epitopes when compared to Sanger sequencing methods. When we compared sequences between the MHC-matched controller and the three non-controllers, we found the viral population in the controller was less diverse and accumulated different variants than the viral populations in the non-controllers. Importantly, we found that initial PCR amplification of viral cDNA did not significantly affect the sequences detected, suggesting that data obtained by pyrosequencing PCR-amplified viral cDNA accurately represents the diversity of sequences replicating within an animal. This demonstrates that chronic sequence diversity across the entire SIV coding sequence is similar among MHC-identical animals with comparable viral loads when infected with the same clonal virus stock. Additionally, our approach to genome-wide SIV sequencing accurately reflects the diversity of sequences present in the replicating viral population. In sum, our study suggests that genome-wide pyrosequencing of immunodeficiency viruses captures a thorough and unbiased picture of sequence diversity, and may be a useful approach to employ when evaluating which sequences to include as part of a vaccine immunogen.  相似文献   

5.
Peut V  Kent SJ 《Journal of virology》2007,81(23):13125-13134
Human immunodeficiency virus (HIV)-specific CD8 T lymphocytes are important for the control of viremia, but the relative utility of responses to the various HIV proteins is controversial. Immune responses that force escape mutations that exact a significant fitness cost from the mutating virus would help slow progression to AIDS. The HIV envelope (Env) protein is subject to both humoral and cellular immune responses, suggesting that multiple rounds of mutation are needed to facilitate viral escape. The Gag protein, however, has recently been shown to elicit a more effective CD8 T-cell immune response in humans. We studied 30 pigtail macaques for their CD8 T-lymphocyte responses to HIV-1 Env and simian immunodeficiency virus (SIV) Gag following prime/boost vaccination and intrarectal challenge with simian-human immunodeficiency virus SHIVmn229. Eight CD8 Env-specific T-cell epitopes were identified and mapped in 10 animals. Animals that generated Env-specific CD8 T-cell responses had equivalent viral loads and only a modest advantage in retention of peripheral CD4 T lymphocytes compared to those animals without responses to Env. This contrasts with animals that generated CD8 T-cell responses to SIV Gag in the same trial, demonstrating superior control of viral load and a larger advantage in retention of peripheral CD4 T cells than Gag nonresponders. Mutational escape was common in Env but, in contrast to mutations in Gag, did not result in the rapid emergence of dominant escape motifs, suggesting modest selective pressure from Env-specific T cells. These results suggest that Env may have limited utility as a CD8 T-cell immunogen.  相似文献   

6.
Here, we investigated the containment of virus replication in simian immunodeficiency virus (SIV) infection by CD8(+) lymphocytes. Escape mutations in Mamu-A*01 epitopes appeared first in SIV Tat TL8 and then in SIV Gag p11C. The appearance of escape mutations in SIV Gag p11C was coincident with compensatory changes outside of the epitope. Eliminating CD8(+) lymphocytes from rhesus monkeys during primary infection resulted in more rapid disease progression that was associated with preservation of canonical epitopes. These results confirm the importance of cytotoxic T cells in controlling viremia and the constraint on epitope sequences that require compensatory changes to go to fixation.  相似文献   

7.
The prominent role of antiviral cytotoxic CD8+ T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef103-111RM9 (RM9), Tat28-35SL8 (SL8), and Gag181-189CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day−1 within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day−1 within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.A critical role of CD8+ T-lymphocytes (CD8-TL) in controlling the peak of acute viral replication has been demonstrated both in HIV-1 (10, 31, 57) and experimental SIV infections (51). HIV-1-infected patients with strong HIV-1-specific CD8-TL responses early after the onset of the acute retroviral syndrome showed more effective control of primary viremia than patients with low or undetectable virus-specific CD8-TL activity (10). Delayed HIV-1-specific CD8-TL responses within an acutely infected individual was found to be one factor contributing to the patient''s persistent viremia, symptoms, and low CD4+ T-cell counts (31). A close temporal association between the magnitude of immunodominant B57-restrcited HIV-1-specific CD8 T cells and viral load was observed (57). In nonhuman primate models, the effect of CD8+ T cells on acute viral containment has been more directly probed by administering an anti-CD8 antibody to transiently deplete CD8+ lymphocytes from the peripheral blood (51). The resolution of peak viremia was much slower in the CD8+ lymphocyte-depleted rhesus macaques than in the untreated control animals (51).CT8-TL responses provide selective pressure within human leukocyte antigen (HLA)-restricted regions of the viral genome, which can select for escape variants. Understanding the kinetics of viral escape has important implications for the development of T-cell-based vaccines. Recently, in acutely infected HIV-1 subjects, single-genome amplification (SGA) and sequencing have shown that while only random mutations were observed prior to peak viremia (50), CD8-TL escape mutations were prominent as early as 20 to 30 days after the acute peak of viremia (24), well before the establishment of the viral set point. Indeed, it was observed that the emergence of viral escape mutants occurred coincidently with the expansion of the epitope-specific CD8-TL population in the acutely infected host, and that it resulted in amino acid substitutions in the transmitted/founder virus that diminished recognition by CT8-TL specific for the original (transmitted) epitope (24).Quantitatively, the average rate of CD8-TL escape mutation within 20 days of HIV-1 infection since the first screening has been estimated as 0.33 day−1 (24). This early escape rate is substantially greater than the chronic escape rate, which has been estimated as 0.04 day−1 (6). However, these prior estimates (6, 24) have been based on Sanger sequencing data from a limited number of virus clones. The availability of ultradeep pyrosequencing methods provides the opportunity to revisit these estimates using much richer data sets, which can detect mutations with a frequency of as little as 1% (8). The quantification of the rate of CD8-TL escape in SIV and HIV-1 is important, since it can serve as a surrogate measure of the magnitude and effectiveness of the host CD8-TL response. Mathematical models have been developed to quantify the process of viral CD8-TL escape (6, 7, 23), which framed the escape phenomenon as a synergetic outcome of the differences of wild and mutant epitopes in terms of susceptibility to cytotoxic T-lymphocyte (CTL) killing versus their intrinsic viral fitness.The goal of the present study was to quantify escape dynamics within three well-defined CD8-TL epitopes by rigorously analyzing both previously published and newly generated ultradeep pyrosequencing data from a set of eight SIV-infected macaques (8). Bimber and colleagues (8) previously demonstrated multifarious patterns of CTL escape in these SIV-infected macaques, and a recently published analysis of the same data set by Hughes et al. revealed that the persistence of low levels of inoculum sequence and its consistent loss kinetics enable the reliable inference of the wild-type sequence when only samples from later in infection are available for study (26). Here, we used the same extensive sequence data set, in combination with newly generated data, to quantify viral escape dynamics for three well-defined CD8-TL epitopes relative to the transmitted (wild-type) epitope sequence. By fitting a mathematical model of CD8-TL escape (6) to the experimentally determined CT8-TL escape kinetics, we compared the rate of the first CD8-TL escape of the escape-prone epitopes, Nef103-111RM9 and Tat28-35SL8, to that of the escape-resistant epitope, Gag181-189CM9. For this purpose, we define the time to first CD8-TL escape as the time when the first CD8-TL escape mutant comprises 50% of the combined population of the transmitted (wild) sequence and the first escape mutant clone. This definition is different from the timing of the first emergence of amino acid variants within an epitope. Our definition can be used when individual clones are obtained either by single-genome amplification (42, 49) or pyrosequencing (32, 48).In this study, by employing a rich data set from ultradeep pyrosequencing, we tested the hypothesis that the transmitted epitope contributes to the formation of a reservoir of infection. Our results suggest that this is indeed the case, and they also suggest that viral reversion (13, 21, 34, 37) is complicated in some cases by the unexpected persistence of wild-type, transmitted virus strains long after initial infection.  相似文献   

8.
CD8(+) T lymphocytes appear to play a role in controlling human immunodeficiency virus (HIV) replication, yet routine immunological assays do not measure the antiviral efficacy of these cells. Furthermore, it has been suggested that CD8+ T cells that recognize epitopes derived from proteins expressed early in the viral replication cycle can be highly efficient. We used a functional in vitro assay to assess the abilities of different epitope-specific CD8+ T-cell lines to control simian immunodeficiency virus (SIV) replication. We compared the antiviral efficacies of 26 epitope-specific CD8+ T-cell lines directed against seven SIV epitopes in Tat, Nef, Gag, Env, and Vif that were restricted by either Mamu-A*01 or Mamu-A*02. Suppression of SIV replication varied depending on the epitope specificities of the CD8+ T cells and was unrelated to whether the targeted epitope was derived from an early or late viral protein. Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines were consistently superior at suppressing viral replication compared to the other five SIV-specific CD8+ T-cell lines. We also investigated the impact of viral escape on antiviral efficacy by determining if Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines could suppress the replication of an escaped virus. Viral escape abrogated the abilities of Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T cells to control viral replication. However, gamma interferon (IFN-gamma) enzyme-linked immunospot and IFN-gamma/tumor necrosis factor alpha intracellular-cytokine-staining assays detected cross-reactive immune responses against the Gag escape variant. Understanding antiviral efficacy and epitope variability, therefore, will be important in selecting candidate epitopes for an HIV vaccine.  相似文献   

9.
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.  相似文献   

10.
Understanding the correlates of immune protection against human immunodeficiency virus and simian immunodeficiency virus (SIV) will require defining the entire cellular immune response against the viruses. Here, we define two novel translation products from the SIV env mRNA that are targeted by the T-cell response in SIV-infected rhesus macaques. The shorter product is a subset of the larger product, which contains both the first exon of the Rev protein and a translated portion of the rev intron. Our data suggest that the translation of viral alternate reading frames may be an important source of T-cell epitopes, including epitopes normally derived from functional proteins.The pathway from viral infection to the cellular immune response is not well understood. Despite the importance of T-cell responses in control of AIDS virus replication (1, 3, 8, 22), the sources of the peptides recognized by virus-specific T cells are still being discovered. AIDS virus-specific CD8+ T lymphocytes (CD8-TL) recognize complexes of major histocompatibility complex (MHC) class I and virus-derived epitopes presented on the surface of infected cells. These epitopes can be derived from exogenous viral proteins in the infecting virion (19, 20) or from de novo synthesis of viral proteins (9, 21). Additional sources of epitopes are also being explored (4, 6).CD8-TL can also recognize epitopes derived from translation of viral alternate reading frames (ARFs). Though CD8-TL specific for ARF-derived epitopes have been detected in human immunodeficiency virus (HIV) (2), they remain a largely unexplored source of epitopes that might elicit potent antiviral cellular immune responses. We recently showed that SIVmac239-infected rhesus macaques that spontaneously controlled viral replication, termed elite controllers, made immunodominant CD8-TL responses against an epitope (RHLAFKCLW, or cRW9) derived from an ARF of the env gene (15). This response selected for viral escape in vivo and suppressed viral replication in an in vitro assay. These findings imply that CD8-TL specific for ARF-derived epitopes might be an important component of the total AIDS virus-specific cellular immune response.Here, we show that the cRW9 epitope is translated as part of two distinct products that differ in size due to start codon usage. The larger and more frequent product contains both the first 23 amino acids of the Rev protein (exon 1) and 50 amino acids translated from the rev intron. The smaller is produced by translation initiation at a start codon within the rev intron and is a subset of the larger product. Finally, we show that these products are degraded after translation from the mature Env-encoding mRNA.  相似文献   

11.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.  相似文献   

12.
Virus-specific CD8(+) T lymphocytes select for escape mutations in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). To assess the effects of these mutations on viral fitness, we introduced escape mutations into 30 epitopes (bound by five major histocompatibility complex class I [MHC-I] molecules) in three different viruses. Two of these MHC-I alleles are associated with elite control. Two of the three viruses demonstrated reduced fitness in vivo, and 27% of the introduced mutations reverted. These findings suggest that T cell epitope diversity may not be such a daunting problem for the development of an HIV vaccine.  相似文献   

13.
CD8+ T cells play a major role in the containment of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. CD8+ T cell-driven variations in conserved regions under functional constraints result in diminished viral replicative capacity. While compensatory mutations outside an epitope can restore replicative capacity, the kinetics with which they arise remains unknown. Additionally, certain patterns of linked mutations associated with CD8+ T cell epitope escape in these highly conserved regions may lead to variable levels of viral fitness. Here, we used pyrosequencing to investigate the kinetics and patterns of mutations surrounding the Mamu-A1*00101-bound Gag(181-189)CM9 CD8+ T cell epitope. We obtained more than 400 reads for each sequencing time point, allowing us to confidently detect the emergence of viral variants bearing escape mutations with frequencies as low as 1% of the circulating virus. With this level of detail, we demonstrate that compensatory mutations generally arise concomitantly with Gag(181-189)CM9 escape mutations. We observed distinct patterns of linked flanking mutations, most of which were found downstream of Gag(181-189)CM9. Our data indicate that, whereas Gag(181-189)CM9 escape is much more complex that previously appreciated, it occurs in a coordinated fashion, with very specific patterns of flanking mutations required for immune evasion. This is the first detailed report of the ontogeny of compensatory mutations that allow CD8+ T cell epitope escape in infected individuals.  相似文献   

14.
Viral sequence evolution in acute hepatitis C virus infection   总被引:2,自引:0,他引:2       下载免费PDF全文
CD8(+)-T-cell responses play an important role in the containment and clearance of hepatitis C virus (HCV) infection, and an association between viral persistence and development of viral escape mutations has been postulated. While escape from CD8+ -T-cell responses has been identified as a major driving force for the evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), a broader characterization of this relationship is needed in HCV infection. To determine the extent, kinetics, and driving forces of HCV sequence evolution, we sequenced the entire HCV genome longitudinally in four subjects monitored for up to 30 months after acute infection. For two subjects the transmission sources were also available. Of 53 total non-envelope amino acid substitutions detected, a majority represented forward mutations away from the consensus sequence. In contrast to studies in HIV and SIV, however, only 11% of these were associated with detectable CD8+ T-cell responses. Interestingly, 19% of non-envelope mutations represented changes toward the consensus sequence, suggesting reversion in the absence of immune pressure upon transmission. Notably, the rate of evolution of forward and reverse mutations correlated with the conservation of each residue, which is indicative of structural constraints influencing the kinetics of viral evolution. Finally, the rate of sequence evolution was observed to decline over the course of infection, possibly reflective of diminishing selection pressure by dysfunctional CD8+ T cells. Taken together, these data provide insight into the extent to which HCV is capable of evading early CD8+ T-cell responses and support the hypothesis that dysfunction of CD8+ T cells may be associated with failure to resolve HCV infections.  相似文献   

15.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

16.
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.  相似文献   

17.
Human immunodeficiency virus (HIV)-positive individuals can be superinfected with different virus strains. Individuals who control an initial HIV infection are therefore still at risk for subsequent infection with divergent viruses, but the barriers to such superinfection remain unclear. Here we tested long-term nonprogressors' (LTNPs') susceptibility to superinfection using Indian rhesus macaques that express the major histocompatibility complex class I (MHC-I) allele Mamu-B 17, which is associated with control of the pathogenic AIDS virus SIVmac239. The Mamu-B 17-restricted CD8(+) T cell repertoire is focused almost entirely on 5 epitopes. We engineered a series of SIVmac239 variants bearing mutations in 3, 4, or all 5 of these epitopes and used them to serially challenge 2 Mamu-B 17-positive LTNPs. None of the escape variants caused breakthrough replication in LTNPs, although they readily infected Mamu-B 17-negative naive macaques. In vitro competing coculture assays and examination of viral evolution in hosts lacking Mamu-B 17 suggested that the mutant viruses had negligible defects in replicative fitness. Both LTNPs maintained robust immune responses, including simian immunodeficiency virus (SIV)-specific CD8(+) and CD4(+) T cells and neutralizing antibodies. Our results suggest that escape mutations in epitopes bound by "protective" MHC-I molecules may not be sufficient to establish superinfection in LTNPs.  相似文献   

18.
Here, we show that a CD40L-adjuvanted DNA/modified vaccinia virus Ankara (MVA) simian immunodeficiency virus (SIV) vaccine enhances protection against a pathogenic neutralization-resistant mucosal SIV infection, improves long-term viral control, and prevents AIDS. Analyses of serum IgG antibodies to linear peptides of SIV Env revealed a strong response to V2, with targeting of fewer epitopes in the immunodominant region of gp41 (gp41-ID) and the V1 region as a correlate for enhanced protection. Greater expansion of antiviral CD8 T cells in the gut correlated with long-term viral control.  相似文献   

19.
CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386-394GW9, Nef103-111RM9, and Rev59-68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59-68SP10 was associated with delayed accumulation of variants in Gag386-394GW9 but had no effect on variation within Nef103-111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection.  相似文献   

20.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号