首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Rationale

Unbiased approaches that study aberrant protein expression in primary airway epithelial cells at single cell level may profoundly improve diagnosis and understanding of airway diseases. We here present a flow cytometric procedure to study CFTR expression in human primary nasal epithelial cells from patients with Cystic Fibrosis (CF). Our novel approach may be important in monitoring of therapeutic responses, and better understanding of CF disease at the molecular level.

Objectives

Validation of a panel of CFTR-directed monoclonal antibodies for flow cytometry and CFTR expression analysis in nasal epithelial cells from healthy controls and CF patients.

Methods

We analyzed CFTR expression in primary nasal epithelial cells at single cell level using flow cytometry. Nasal cells were stained for pan-Cytokeratin, E cadherin, and CD45 (to discriminate epithelial cells and leukocytes) in combination with intracellular staining of CFTR. Healthy individuals and CF patients were compared.

Measurements and Main Results

We observed various cellular populations present in nasal brushings that expressed CFTR protein at different levels. Our data indicated that CF patients homozygous for F508del express varying levels of CFTR protein in nasal epithelial cells, although at a lower level than healthy controls.

Conclusion

CFTR protein is expressed in CF patients harboring F508del mutations but at lower levels than in healthy controls. Multicolor flow cytometry of nasal cells is a relatively simple procedure to analyze the composition of cellular subpopulations and protein expression at single cell level.  相似文献   

2.

Introduction

Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures.

Methods

Paired nasal and bronchial epithelial cells from asthmatic children (n = 9) were differentiated for 28 days under unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocytochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine analysis.

Results

Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when unstimulated, while exhibiting a diminished and varied response to IL-13.

Conclusions

We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological surrogate in the event that bronchial epithelial cells are not available.  相似文献   

3.

Background

Peroxisome proliferator-activated receptor (PPAR) α, βδ and γ are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested.

Methods

Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification.

Results

mRNA expression of PPARα, PPARβδ, PPARγ was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARα and PPARγ than normal nasal mucosa and these levels were, for PPARγ, further reduced following steroid treatment. PPARγ immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARγ immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment.

Conclusion

The down-regulation of PPARγ, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARγ might be of importance in long standing inflammations.  相似文献   

4.

Background

The origin of nasal polyps in chronic rhinosinusitis is unknown, but the role of viral infections in polyp growth is clinically well established. Toll-like receptors (TLRs) have recently emerged as key players in our local airway defense against microbes. Among these, TLR9 has gained special interest in viral diseases. Many studies on chronic rhinosinusitis with nasal polyps (CRSwNP) compare polyp tissue with nasal mucosa from polyp-free individuals. Knowledge about changes in the turbinate tissue bordering the polyp tissue is limited.

Objectives

To analyse the role of TLR9 mediated microbial defense in tissue bordering the polyp.

Methods

Nasal polyps and turbinate tissue from 11 patients with CRSwNP and turbinate tissue from 11 healthy controls in total were used. Five biopsies from either group were analysed immediately with flow cytometry regarding receptor expression and 6 biopsies were used for in vitro stimulation with a TLR9 agonist, CpG. Cytokine release was analysed using Luminex. Eight patients with CRSwNP in total were intranasally challenged with CpG/placebo 24 hours before surgery and the biopsies were collected and analysed as above.

Results

TLR9 expression was detected on turbinate epithelial cells from healthy controls and polyp epithelial cells from patients, whereas TLR9 was absent in turbinate epithelial cells from patients. CpG stimulation increased the percentage cells expressing TLR9 and decreased percentage cells expressing VEGFR2 in turbinate tissue from patients. After CpG stimulation the elevated levels of IL-6, G-CSF and MIP-1β in the turbinate tissue from patients were reduced towards the levels demonstrated in healthy controls.

Conclusion

Defects in the TLR9 mediated microbial defense in the mucosa adjacent to the anatomic origin of the polyp might explain virus induced polyp growth. CpG stimulation decreased VEGFR2, suggesting a role for CpG in polyp formation. The focus on turbinate tissue in patients with CRSwNP opens new perspectives in CRSwNP-research.  相似文献   

5.

Background

Patients with primary immunodeficiency (PID) often suffer from frequent respiratory tract infections. Despite standard treatment with IgG-substitution and antibiotics many patients do not improve significantly. Therefore, we hypothesized that additional immune deficits may be present among these patients.

Objective

To investigate if PID patients exhibit impaired production of antimicrobial peptides (AMPs) in nasal fluid and a possible link between AMP-expression and Th17-cells.

Methods

Nasal fluid, nasopharyngeal swabs and peripheral blood mononuclear cells (PBMCs) were collected from patients and healthy controls. AMP levels were measured in nasal fluid by Western blotting. Nasal swabs were cultured for bacteria. PBMCs were stimulated with antigen and the supernatants were assessed for IL-17A release by ELISA.

Results

In healthy controls and most patients, AMP levels in nasal fluid were increased in response to pathogenic bacteria. However, this increase was absent in patients with common variable immunodeficiency (CVID) and Hyper-IgE syndrome (HIES), despite the presence of pathogenic bacteria. Furthermore, stimulation of PBMCs revealed that both HIES and CVID patients exhibited an impaired production of IL-17A.

Conclusion

CVID and HIES patients appear to have a dysregulated AMP response to pathogenic bacteria in the upper respiratory tract, which could be linked to an aberrant Th17 cell response.  相似文献   

6.

Introduction

Although most individuals with cystic fibrosis (CF) develop progressive obstructive lung disease, disease severity is highly variable, even for individuals with similar CFTR mutations. Measurements of chloride transport as expression of CFTR function in nasal epithelial cells correlate with pulmonary function and suggest that F508del-CFTR is expressed at the apical membrane. However, an association between quantitative apical CFTR expression in nasal epithelium and CF disease severity is still missing.

Methods and Materials

Nasal epithelial cells from healthy individuals and individuals with CF between 12–18 years were obtained by nasal brushing. Apical CFTR expression was measured by confocal microscopy using CFTR mAb 596. Expression was compared between both groups and expression in CF nasal epithelial cells was associated with standardized pulmonary function (FEV1%).

Results

The proportion of cells expressing apical CFTR in columnar epithelium is lower in CF compared to non-CF. The apical CFTR expression level was significantly correlated with FEV1% in F508del homozygous subjects (r = 0.63, p = 0.012).

Conclusion

CFTR expression in nasal epithelial cells is lower in subjects with CF compared to healthy subjects. The proportion of cells expressing F508del-CFTR at the apical membrane is variable between subjects and is positively correlated with FEV1% in F508del-CFTR homozygous subjects.  相似文献   

7.

Introduction

Little is known about how neonatal airway epithelial cell phenotype impacts on respiratory disease in later life. This study aimed to establish a methodology to culture and characterise neonatal nasal epithelial cells sampled from healthy, non-sedated infants within 48 hours of delivery.

Methods

Nasal epithelial cells were sampled by brushing both nostrils with an interdental brush, grown to confluence and sub-cultured. Cultured cells were characterised morphologically by light and electron microscopy and by immunocytochemistry. As an exemplar pro-inflammatory chemokine, IL-8 concentrations were measured in supernatants from unstimulated monolayers and after exposure to IL-1β/TNF-α or house dust mite extract.

Results

Primary cultures were successfully established in 135 (91%) of 149 neonatal samples seeded, with 79% (n  =  117) successfully cultured to passage 3. The epithelial lineage of the cells was confirmed by morphological analysis and immunostaining. Constitutive IL-8 secretion was observed and was upregulated by IL-1β/TNF-α or house dust mite extract in a dose dependent manner.

Conclusion

We describe a safe, minimally invasive method of culturing nasal epithelial cells from neonates suitable for functional cell analysis offering an opportunity to study “naïve” cells that may prove useful in elucidating the role of the epithelium in the early origins of asthma and/or allergic rhinitis.  相似文献   

8.

Introduction

In granulomatosis with polyangiitis (GPA), a complex autoimmune small-vessel vasculitis frequently associated with chronic necrotizing inflammation of the nasal mucosa, elevated nasal Staphylococcus (S.) aureus carrier rates are a risk factor for relapse. As cytokines are primarily involved in the regulation of defense against potentially pathogenic microorganisms, the aim of this study was to compare healthy individuals and GPA patients with respect to their baseline cytokine expression of nasal epithelial cells (NEC), which form the first barrier against such triggers. The ability of S. aureus to influence the nasal microenvironment''s cytokine secretion was assessed by exemplary stimulation experiments.

Methods

Baseline expression of 19 cytokines of primary NEC of GPA patients and normal controls (NC) was quantified by a multiplex cytokine assay. Stimulation experiments were performed with supernatants of S. aureus and expression of interleukin-8 was determined by ELISA.

Results

In GPA, an altered pattern of baseline cytokine expression with significantly up-regulated G-CSF and reduced interleukin (IL)-8 concentrations was observed. Both NEC of GPA patients and NC responded to stimulation with S. aureus, but GPA patients displayed a significantly lower IL-8 secretion and a diminished dynamic range of response towards the stimulus.

Conclusions

The data presented underline the hypothesis of a disturbed epithelial nasal barrier function in GPA. The dysregulated baseline expression of G-CSF and IL-8 and the reduced response to microbial stimulation may facilitate changes in the composition of the nasal flora and favour an imbalanced inflammatory response, which might be relevant for the disease course.  相似文献   

9.

Background

The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium.

Objective

Defining gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles.

Methods

This cross-sectional study included 18 subjects (6 allergic asthma and allergic rhinitis; 6 allergic rhinitis; 6 healthy controls). The estimated false discovery rate comparing 6 subjects per group was approximately 5%. RNA was extracted from isolated and cultured epithelial cells from bronchial brushings and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array). Data were analysed using R and Bioconductor Limma package. For gene ontology GeneSpring GX12 was used.

Results

The study was successfully completed by 17 subjects (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). Using correction for multiple testing, 1988 genes were differentially expressed between healthy lower and upper airway epithelium, whereas in allergic rhinitis with or without asthma this was only 40 and 301 genes, respectively. Genes influenced by allergic rhinitis with or without asthma were linked to lung development, remodeling, regulation of peptidases and normal epithelial barrier functions.

Conclusions

Differences in epithelial gene expression between the upper and lower airway epithelium, as observed in healthy subjects, largely disappear in patients with allergic rhinitis with or without asthma, whilst new differences emerge. The present data identify several pathways and genes that might be potential targets for future drug development.  相似文献   

10.
11.

Background

TNFα may contribute to the pathophysiology of airway inflammation. For example, we have recently shown that nasal administration of TNFα produces late phase co-appearance of granulocyte and plasma exudation markers on the mucosal surface. The objective of the present study was to examine indices of granulocyte presence and activity in response to intranasal TNFα challenge.

Methods

Healthy subjects and patients with allergic rhinitis (examined out of season) were subjected to nasal challenge with TNFα (10 μg) in a sham-controlled and crossover design. Nasal lavages were carried out prior to and 24 hours post challenge. Nasal biopsies were obtained post challenge. Nasal lavage fluid levels of myeloperoxidase (MPO) and eosinophil cationic protein (ECP) were analyzed as indices of neutrophil and eosinophil activity. Moreover, IL-8 and α2-macroglobulin were analyzed as markers of pro-inflammatory cytokine production and plasma exudation. Nasal biopsy numbers of neutrophils and eosinophils were monitored.

Results

Nasal lavage fluid levels of MPO recorded 24 hours post TNFα challenge were increased in healthy subjects (p = 0.0081) and in patients with allergic rhinitis (p = 0.0081) (c.f. sham challenge). Similarly, α2-macroglobulin was increased in healthy subjects (p = 0.014) and in patients with allergic rhinitis (p = 0.0034). Lavage fluid levels of ECP and IL-8 were not affected by TNFα challenge. TNFα increased the numbers of subepithelial neutrophils (p = 0.0021), but not the numbers of eosinophils.

Conclusion

TNFα produces a nasal inflammatory response in humans that is characterised by late phase (i.e., 24 hours post challenge) neutrophil activity and plasma exudation.  相似文献   

12.
13.

Background

S100A7 is a calcium-binding protein with chemotactic and antimicrobial properties. S100A7 protein levels are decreased in nasal lavage fluid from individuals with ongoing allergic rhinitis, suggesting a role for S100A7 in allergic airway inflammation. The aims of this study were to describe genetic variation in S100A7 and search for associations between this variation and allergic rhinitis.

Methods

Peripheral blood was collected from 184 atopic patients with a history of pollen-induced allergic rhinitis and 378 non-atopic individuals, all of Swedish origin. DNA was extracted and the S100A7 gene was resequenced in a subset of 47 randomly selected atopic individuals. Nine polymorphisms were genotyped in 184 atopic and 378 non-atopic individuals and subsequently investigated for associations with allergic rhinitis as well as skin prick test results. Haplotypes were estimated and compared in the two groups.

Results

Thirteen polymorphisms were identified in S100A7, of which 7 were previously undescribed. rs3014837 (G/C), which gives rise to an Asp → Glu amino acid shift, had significantly increased minor allele frequency in atopic individuals. The major haplotype, containing the major allele at all sites, was more common in non-atopic individuals, while the haplotype containing the minor allele at rs3014837 was equally more common among the atopic individuals. Additionally, heterozygotes at this site had significantly higher scores in skin prick tests for 9 out of 11 tested allergens, compared to homozygotes.

Conclusion

This is the first study describing genetic variation, associated with allergy, in S100A7. The results indicate that rs3014837 is linked to allergic rhinitis in our Swedish population and render S100A7 a strong candidate for further investigations regarding its role in allergic inflammation.  相似文献   

14.
15.

Background

Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating.

Methods

Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion.

Results

A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells.

Conclusion

Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable ultrastructural defects of the ciliary axoneme, emphasizing the role of the nexin-dynein regulatory complex and the limitations of certain methods for PCD diagnosis.  相似文献   

16.

Objective

To determine effects of probiotic consumption on clinical and immunological parameters of seasonal allergic rhinitis (SAR) in an out-of-season single nasal allergen challenge.

Methods

In a study registered at ClinicalTrials.Gov (NCT01123252), a 16-week dietary intervention was undertaken in 60 patients with allergic rhinitis (>16 years old). Using a double-blinded, placebo-controlled anonymised design, the patients were divided equally into two groups. One group was given a dairy drink containing Lactobacillus casei Shirota to ingest daily while the other consumed a similar drink without bacteria. Participants attended the clinic on two consecutive days before the intervention and then again at the end of the study period. On the first day of each 2-day visit, following clinical examination, assessments were made of total nasal symptoms scores and peak nasal inspiratory flow. Nasal scrapings, nasal lavage and blood were collected for laboratory analyses of cellular phenotypes, soluble mediator release and in vitro responses to pollen allergen. These procedures were repeated 24 hours following nasal allergen challenge.

Results

Prior to and following intervention there were no detectable differences between study groups in measured clinical outcome. After intervention, there were differences between groups in their percentages of CD86+ epithelial cells (p = 0.0148), CD86+CD252+ non-epithelial cells (p = 0.0347), sIL-1RII release (p = 0.0289) and IL-1β (p = 0.0224) levels at the nasal mucosa. Delivery of probiotic also suppressed production of sCD23 (p = 0.0081), TGF-β (p = 0.0283) and induced increased production of IFN-γ (p = 0.0351) in supernatants of cultured peripheral blood.

Conclusions & Clinical Relevance

This study did not show significant probiotic-associated changes with respect to the primary clinical endpoint. An absence of overt clinical benefit may be due to an inability of single nasal challenges to accurately represent natural allergen exposure. Nevertheless, oral delivery of probiotics produced changes of the immunological microenvironment at the nasal mucosa in individuals affected by SAR.

Trial Registration

ClinicalTrials.Gov NCT01123252  相似文献   

17.

Background

The reticular basement membrane (Rbm) in smokers and especially smokers with COPD is fragmented with "clefts" containing cells staining for the collagenase matrix-metalloproteinase-9 (MMP-9) and fibroblast protein, S100A4. These cells are also present in the basal epithelium. Such changes are likely hallmarks of epithelial mesenchymal transition (EMT). We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.

Methods

Endobronchial biopsy sections from 17 COPD current smokers, with documented Rbm splitting and cellularity were stained for neutrophil elastase (neutrophil marker), CD68 (macrophage/mature fibroblasts), CD4+/CD8+ T lymphocytes, CD19 (B-cells), CD11c (dendritic cells/inflammatory cells), and S100 (Langerhans cells). The number of cells in the Rbm and epithelium staining for these "inflammatory" cell markers were then compared to numbers staining for S100A4, "a documented EMT epitope". Slides were double stained for S100A4 and cytokeratin(s).

Results

In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003. Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003. Cells in the basal epithelium 26 (21.3 - 37.3) per mm) and Rbm (5.9 (2.3 - 13.8) per mm) frequently double stained for both cytokeratin and S100A4.

Conclusions

These data provide additional support for active EMT in COPD airways.  相似文献   

18.

Background

Extravasation and luminal entry of plasma occurs continuously in the nose. This process is markedly facilitated in patients with symptomatic allergic rhinitis, resulting in an increased secretion of proteins. Identification of these proteins is an important step in the understanding of the pathological mechanisms in allergic diseases. DNA microarrays have recently made it possible to compare mRNA profiles of lavage fluids from healthy and diseased patients, whereas information on the protein level is still lacking.

Methods

Nasal lavage fluid was collected from 11 patients with symptomatic allergic rhinitis and 11 healthy volunteers. 2-dimensional gel electrophoresis was used to separate proteins in the lavage fluids. Protein spots were picked from the gels and identified using mass spectrometry and database search. Selected proteins were confirmed with western blot.

Results

61 spots were identified, of which 21 were separate proteins. 6 of these proteins (psoriasin, galectin-3, alpha enolase, intersectin-2, Wnt-2B and hypothetical protein MGC33648) had not previously been described in nasal lavage fluids. The levels of psoriasin were markedly down-regulated in allergic individuals. Prolactin-inducible protein was also found to be down-regulated, whereas different fragments of albumin together with Ig gamma 2 chain c region, transthyretin and splice isoform 1 of Wnt-2B were up-regulated among the allergic patients.

Conclusion

The identification of proteins in nasal lavage fluid with 2-dimensional gelelectrophoresis in combination with mass spectrometry is a novel tool to profile protein expression in allergic rhinitis and it might prove useful in the hunt for new therapeutic targets or diagnostic markers for allergic diseases. Psoriasin is a potent chemotactic factor and its down-regulation during inflammation might be of importance for the outcome of the disease.  相似文献   

19.

Background

Peribronchiolar fibrosis is an important feature of small airway remodeling (SAR) in cigarette smoke-induced COPD. The aim of this study was to investigate the role of gelatinases (MMP9, MMP2) and epithelial-mesenchymal transition (EMT) in SAR related to wood smoke (WS) exposure in a rat model.

Methods

Forty-eight female Sprague-Dawley rats were randomly divided into the WS group, the cigarette smoke (CS) group and the clean air control group. After 4 to 7 months of smoke exposure, lung tissues were examined with morphometric measurements, immunohistochemistry and Western blotting. Serum MMP9 and TIMP1 concentrations were detected by ELISA. In vitro, primary rat tracheal epithelial cells were stimulated with wood smoke condensate for 7 days.

Results

The COPD-like pathological alterations in rats exposed chronically to WS were similar to those exposed to CS; the area of collagen deposition was significantly increased in the small airway walls of those exposed to WS or CS for 7 months. The expression of gelatinases in rats induced by WS or CS exposure was markedly increased in whole lung tissue, and immunohistochemistry showed that MMP9, MMP2 and TIMP1 were primarily expressed in the airway epithelium. The serum levels of MMP9 and TIMP1 were significantly higher in rats secondary to WS or CS exposure. Few cells that double immunostained for E-cadherin and vimentin were observed in the airway subepithelium of rats exposed to WS for 7 months (only 3 of these 8 rats). In vitro, the expression of MMP9 and MMP2 proteins was upregulated in primary rat tracheal epithelial cells following exposure to wood smoke condensate for 7 days by Western blotting; positive immunofluorescent staining for vimentin and type I collagen was also observed.

Conclusions

These findings suggest that the upregulation of gelatinases and EMT might play a role in SAR in COPD associated with chronic exposure to wood smoke.  相似文献   

20.

Introduction

Increasing evidence has shown that immune surveillance is compromised in a tumor-promoting microenvironment for patients with non-small cell lung cancer (NSCLC), and can be restored by appropriate chemotherapy.

Methods

To test this hypothesis, we analyzed microarray gene expression profiles of peripheral blood mononuclear cells from 30 patients with newly-diagnosed advanced stage NSCLC, and 20 age-, sex-, and co-morbidity-matched healthy controls. All the patients received a median of four courses of chemotherapy with cisplatin and gemcitabine for a 28-day cycle as first line treatment.

Results

Sixty-nine differentially expressed genes between the patients and controls, and 59 differentially expressed genes before and after chemotherapy were identified. The IL4 pathway was significantly enriched in both tumor progression and chemotherapy signatures. CXCR4 and IL2RG were down-regulated, while DOK2 and S100A15 were up-regulated in the patients, and expressions of all four genes were partially or totally reversed after chemotherapy. Real-time quantitative RT-PCR for the four up-regulated (S100A15, DOK2) and down-regulated (TLR7, TOP1MT) genes in the patients, and the six up-regulated (TLR7, CRISP3, TOP1MT) and down-regulated (S100A15, DOK2, IL2RG) genes after chemotherapy confirmed the validity of the microarray results. Further immunohistochemical analysis of the paraffin-embedded lung cancer tissues identified strong S100A15 nuclear staining not only in stage IV NSCLC as compared to stage IIIB NSCLC (p = 0.005), but also in patients with stable or progressive disease as compared to those with a partial response (p = 0.032). A high percentage of S100A15 nuclear stained cells (HR 1.028, p = 0.01) was the only independent factor associated with three-year overall mortality.

Conclusions

Our results suggest a potential role of the IL4 pathway in immune surveillance of advanced stage NSCLC, and immune potentiation of combination chemotherapy. S100A15 may serve as a potential biomarker for tumor staging, and a predictor of poor prognosis in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号