共查询到20条相似文献,搜索用时 15 毫秒
1.
Small GTPases in vesicle trafficking 总被引:1,自引:0,他引:1
Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking. 相似文献
2.
Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking 总被引:1,自引:0,他引:1
Chaves-Olarte E Guzmán-Verri C Méresse S Desjardins M Pizarro-Cerdá J Badilla J Gorvel JP Moreno E 《Cellular microbiology》2002,4(10):663-676
Brucella abortus is an intracellular pathogen that relies on unconventional virulence factors to infect hosts. In non-professional phagocytes, Rho GTPases-activation by the Escherichia coli cytotoxic necrotizing factor (CNF) promoted massive Brucella entrance by membrane ruffling, a mechanism that differs from the common mode of entrance used by this bacterium in non-treated cells. Cytotoxic necrotizing factor treatment, however, did not alter the intracellular route followed by the wild type or non-virulent defined mutants. In contrast, expression of a constitutively active Rab5Q79L GTPase did not alter cell-invasion by Brucella but hampered its ability to reach the endoplasmic reticulum. The CNF-induced Brucella super-infection did not reduce the ability of host cells to synthesize DNA and progress through the cell cycle. Furthermore, CNF-treatment increased the isolation of Brucella-containing compartments by a factor of 15. These results demonstrate that in non-professional phagocytic cells, Brucella manipulates two different sets of GTPases during its biogenesis, being internalization and intracellular trafficking two consecutive but independent processes. Besides, CNF-induced super-infection demonstrates that Brucella does not interfere with crucial cellular processes and has shown its potential as tool to characterize the intracellular compartments occupied by this bacterium. 相似文献
3.
Several types of GTPases play important roles in intracellular vesicular transport. These include the Rab and Arf families of the Ras superfamily, which are key regulators of several steps in the overall process. The basic structural and mechanistic properties of these proteins and their interactions with partner proteins and membranes are reviewed and compared in this article. 相似文献
4.
5.
Zou S Liu Y Zhang XQ Chen Y Ye M Zhu X Yang S Lipatova Z Liang Y Segev N 《Genetics》2012,191(2):451-460
Ypt/Rab are key regulators of intracellular trafficking in all eukaryotic cells. In yeast, Ypt1 is essential for endoplasmic reticulum (ER)-to-Golgi transport, whereas Ypt31/32 regulate Golgi-to-plasma membrane and endosome-to-Golgi transport. TRAPP is a multisubunit complex that acts as an activator of Ypt/Rab GTPases. Trs85 and Trs130 are two subunits specific for TRAPP III and TRAPP II, respectively. Whereas TRAPP III was shown to acts as a Ypt1 activator, it is still controversial whether TRAPP II acts as a Ypt1 or Ypt31/32 activator. Here, we use GFP-Snc1 as a tool to study transport in Ypt and TRAPP mutant cells. First, we show that expression of GFP-Snc1 in trs85Δ mutant cells results in temperature sensitivity. Second, we suggest that in ypt1ts and trs85Δ, but not in ypt31Δ/32ts and trs130ts mutant cells, GFP-Snc1 accumulates in the ER. Third, we show that overexpression of Ypt1, but not Ypt31/32, can suppress both the growth and GFP-Snc1 accumulation phenotypes of trs85Δ mutant cells. In contrast, overexpression of Ypt31, but not Ypt1, suppresses the growth and GFP-Snc1 transport phenotypes of trs130ts mutant cells. These results provide genetic support for functional grouping of Ypt1 with Trs85-containing TRAPP III and Ypt31/32 with Trs130-containing TRAPP II. 相似文献
7.
Although vesicular trafficking is essential for a large variety of cellular processes, the regulation of vesicular trafficking is still poorly understood. Members of the Rho family of small GTPases have recently emerged as important control elements of many stages of vesicular trafficking, providing new insight into the regulation of these events. We will discuss the diverse roles played by Rho proteins in membrane trafficking and focus on the biological implications of these functions. 相似文献
8.
9.
10.
Bossard C Laurell H Van den Berghe L Meunier S Zanibellato C Prats H 《Nature cell biology》2003,5(5):433-439
Basic fibroblast growth factor (bFGF or FGF-2) exerts its pleiotropic activities both as an exogenous and an intracellular factor. FGF-1 and FGF-2 are prototypes for this dual signalling, but the mechanisms of their intracellular actions remain unknown. Here we show that Translokin, a cytoplasmic protein of relative molecular mass 55,000 (M(r) 55K), interacts specifically with the 18K form of FGF-2. Translokin is ubiquitously expressed and colocalizes with the microtubular network. As Translokin does not interact with FGF-1, we used a strategy based on FGF-1-FGF-2 chimaeras to map the interacting regions in FGF-2 and to generate Nb1a2, a non-interacting variant of FGF-2. Although most of the FGF-2 properties are preserved in Nb1a2, this variant is defective in intracellular translocation and in stimulating proliferation. The fusion of a nuclear localization signal to Nb1a2 restores its mitogenic activity and its nuclear association. Inhibiting Translokin expression by RNA interference reduces the translocation of FGF-2 without affecting the intracellular trafficking of FGF-1. Our data show that the nuclear association of internalized FGF-2 is essential for its mitogenic activity and that Translokin is important in this translocation pathway. 相似文献
11.
12.
The regulatory RAB and ARF GTPases for vesicular trafficking 总被引:4,自引:3,他引:1
13.
Segev N 《Seminars in cell & developmental biology》2011,22(1):33-38
Coordination of transport steps between intracellular compartments is important for ensuring unobstructed traffic flow while maintaining compartment size. Small GTPases from the Rab, Arf and Rho families, which regulate individual transport steps, have also emerged as coordinators of these steps. Here, I summarize evidence supporting the existence of GTPase-dependent transport step coordination at three levels: maturation of two cellular sorting compartments, Golgi and endosomes; coupling of vesicular transport sub-steps between donor and acceptor compartments; and integration of transport steps into whole pathways. The mechanisms proposed for GTPase-mediated transport-step coordination depend on the ability of single GTPases to interact with multiple effectors and on interactions of multiple GTPases through common accessory factors. 相似文献
14.
Activation of the innate immune system by interferon-gamma (IFN-gamma is crucial for host resistance to infection. IFN-gamma induces the expression of a wide range of mediators that undermine the ability of pathogens to survive in host cells, including a newly discovered family of 47-kDa GTPases. Elimination of different p47 GTPases in mice by gene targeting severely cripples IFN-gamma-regulated defence against Toxoplasma gondii, Listeria monocytogenes, Mycobacterium spp. and other pathogens. In this article, we review our understanding of the role of p47 GTPases in resistance to intracellular infection and discuss the present evidence concerning their mode of action. 相似文献
15.
Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR) is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBR) with an intracellular domain of 303 amino acids and a shorter form (OBR) with an intracellular domain of 34 amino acids. Since OBR, is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3-transferrin containing compartments at 37 degrees C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF) and the lysosomal marker protein lamp-1. The transport of leptin was also shown to engage a monensin and bafilomycin sensitive degradation process in lysosomes. Together, our results provide novel data concerning the uptake, intracellular localization and transport of leptin. 相似文献
16.
Membrane trafficking: intracellular highways and country roads 总被引:2,自引:1,他引:1
17.
Ridley AJ 《Trends in cell biology》2006,16(10):522-529
Rho GTPases are well known to regulate actin dynamics. They activate two types of actin nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which induce different types of actin organization. Their ability to interact with membranes allows them to target actin polymerization to discrete sites on the plasma membrane and to intracellular membrane compartments and thereby induce membrane protrusions or regulate vesicle movement. Most studies have concentrated on just three of the 22 mammalian Rho proteins, RhoA, Rac1 and Cdc42. However, recent research indicates that several other members of the Rho family, including Rif, RhoD, TC10 and Wrch1, and also related Rho-of-plants proteins (ROPs) in plants, stimulate actin polymerization and affect plasma membrane protrusion and/or vesicular traffic. 相似文献
18.
RhoA, Rac1, and Cdc42, the founding members of the Rho subfamily of small GTPases, have been the focus of many research studies since the first discovery of their primary roles in the reorganisation of the actin cytoskeleton. Since then, it is clear that they are involved in a great deal of cellular functions, including cell migration and adhesion, cell growth control, and membrane trafficking. The complete sequencing of the human genome has now highlighted a total of 20 genes encoding Rho-like proteins. Little is known about their distinct cellular functions, however, numerous studies are now beginning to unravel that each of the Rho GTPase must play a specific role in the cell in a timely and spatially regulated fashion. Here, we are presenting a brief overview of the distinct functional roles and similarities known to date for each of the Rho members. 相似文献
19.
Micaroni M 《Current molecular medicine》2010,10(8):763-773
The molecular mechanism of membrane fusion essential to vital cellular activities such as intracellular transport, hormone secretion, enzyme release, or neurotransmission, involve the assembly and disassembly of a specialized set of proteins in opposing bilayers. Recent evidences shed new light on the role Ca(2+) has in the regulation of this mechanism in which the Golgi apparatus works as a central station; from here, Ca(2+) ions are released into and recovered from the cytosol during the different steps of the cargo progression. In fact, transient cytosolic Ca(2+) fluctuations take a crucial role to recruit proteins and enzymes Ca(2+)-sensitive on Golgi membranes where they are involved in membranes remodelling which is fundamental process for the fusion events that allow protein trafficking. Here I provide an overview of the role Ca(2+) plays in intra-Golgi trafficking underlying some interesting aspects to clarify the mechanisms of cargo progression. 相似文献
20.
Kapitein LC Schlager MA van der Zwan WA Wulf PS Keijzer N Hoogenraad CC 《Biophysical journal》2010,99(7):2143-2152
Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. 相似文献