首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.  相似文献   

2.
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.  相似文献   

3.
To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.  相似文献   

4.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

5.
Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery.  相似文献   

6.
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.  相似文献   

7.
Tomato bushy stunt virus (TBSV), a plus-stranded [(+)] RNA plant virus, incorporates the host metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the viral replicase complex. Here, we show that, during TBSV replication in yeast, the yeast GAPDH Tdh2p moves from the cytosol to the peroxisomal membrane surface, the site of viral RNA synthesis. In yeast cells lacking Tdh2p, decreasing the levels of its functionally redundant homolog Tdh3p inhibited TBSV replication and resulted in equivalent levels of (+) and minus-stranded [(-)] viral RNA, in contrast to the hallmark excess of (+)RNA. Tdh2p specifically bound an AU pentamer sequence in the (-)RNA, suggesting that GAPDH promotes asymmetric RNA synthesis by selectively retaining the (-)RNA template in the replicase complex. Downregulation of GAPDH in a natural plant host decreased TBSV genomic RNA accumulation. Thus, TBSV co-opts the RNA-binding function of a metabolic protein, helping convert the host cell into a viral factory.  相似文献   

8.
RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs) that drive viral replication. The host lipins (phosphatidate phosphatases) are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase), which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER) membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.  相似文献   

9.
The mechanism of template selection for genome replication in plus-strand RNA viruses is poorly understood. Using the prototypical tombusvirus, Tomato bushy stunt virus (TBSV), we show that recombinant p33 replicase protein binds specifically to an internal replication element (IRE) located within the p92 RNA-dependent RNA polymerase coding region of the viral genome. Specific binding of p33 to the IRE in vitro depends on the presence of a C.C mismatch within a conserved RNA helix. Interestingly, the absence of the p33:p33/p92 interaction domain in p33 prevented specific but allowed nonspecific RNA binding, suggesting that a multimeric form of this protein is involved in the IRE-specific interaction. Further support for the selectivity of p33 binding in vitro was provided by the inability of the replicase proteins of the closely related Turnip crinkle virus and distantly related Hepatitis C virus to specifically recognize the TBSV IRE. Importantly, there was also a strong correlation between p33:IRE complex formation in vitro and viral replication in vivo, where mutations in the IRE that disrupted selective p33 binding in vitro also abolished TBSV RNA replication both in plant and in Saccharomyces cerevisiae cells. Based on these findings and the other known properties of p33 and the IRE, it is proposed that the p33:IRE interaction provides a mechanism to selectively recruit viral RNAs into cognate viral replicase complexes. Since all genera in Tombusviridae encode comparable replicase proteins, these results may be relevant to other members of this large virus family.  相似文献   

10.
Jaag HM  Nagy PD 《PLoS pathogens》2010,6(10):e1001156
Viruses are masters of evolution due to high frequency mutations and genetic recombination. In spite of the significance of viral RNA recombination that promotes the emergence of drug-resistant virus strains, the role of host and environmental factors in RNA recombination is poorly understood. Here we report that the host Met22p/Hal2p bisphosphate-3'-nucleotidase regulates the frequency of viral RNA recombination and the efficiency of viral replication. Based on Tomato bushy stunt virus (TBSV) and yeast as a model host, we demonstrate that deletion of MET22 in yeast or knockdown of AHL, SAL1 and FRY1 nucleotidases/phosphatases in plants leads to increased TBSV recombination and replication. Using a cell-free TBSV recombination/replication assay, we show that the substrate of the above nucleotidases, namely 3'-phosphoadenosine-5'-phosphate pAp, inhibits the activity of the Xrn1p 5'-3' ribonuclease, a known suppressor of TBSV recombination. Inhibition of the activity of the nucleotidases by LiCl and NaCl also leads to increased TBSV recombination, demonstrating that environmental factors could also affect viral RNA recombination. Thus, host factors in combination with environmental factors likely affect virus evolution and adaptation.  相似文献   

11.
Recent in vitro proteomics screens revealed that many host proteins could interact with the replication proteins of Tomato bushy stunt virus (TBSV), which is a small, plus-stranded RNA virus (Z. Li, D. Barajas, T. Panavas, D. A. Herbst, and P. D. Nagy, J. Virol. 82:6911-6926, 2008). To further our understanding of the roles of host factors in TBSV replication, we have tested the effect of Rsp5p, which is a member of the Nedd4 family of E3 ubiquitin ligases. The full-length Rsp5p, via its WW domain, is shown to interact with p33 and the central portion of p92pol replication proteins. We find that overexpression of Rsp5p inhibits TBSV replication in Saccharomyces cerevisiae yeast, while downregulation of Rsp5p leads to increased TBSV accumulation. The inhibition is caused by Rsp5p-guided degradation of p92pol, while the negative effect on the p33 level is less pronounced. Interestingly, recombinant Rsp5p also inhibits TBSV RNA replication in a cell-free replication assay, likely due to its ability to bind to p33 and p92pol. We show that the WW domain of Rsp5p, which is involved in protein interactions, is responsible for inhibition of TBSV replication, whereas the HECT domain, involved in protein ubiquitination, is not necessary for Rsp5p-mediated inhibition of viral replication. Overall, our data suggest that direct binding between Rsp5p and p92pol reduces the stability of p92pol, with consequent inhibition of TBSV replicase activity.Various interactions with their host cells are critical for plus-stranded (+)RNA viruses as they attempt to utilize the host translation machinery to produce viral proteins, gain access to the resources of the host cells, co-opt host proteins, and subvert host membranes (1, 17). Additional levels of interaction between virus and host reflect antiviral responses which may involve innate immunity, as well as other antiviral processes and factors. On-going research with several model viruses is striving to map all the interactions between viruses and hosts and characterize the functions of the co-opted host factors. In this regard, recent research has led to the identification of a large number of host proteins which affect the replication of various (+)RNA viruses and minus-stranded RNA viruses (4, 5, 9, 11, 22, 35, 39). The roles and functions of most of the host proteins identified as being involved in RNA virus replication, however, are currently unknown.Tombusviruses, such as Tomato bushy stunt virus (TBSV), are among the most advanced model systems in relation to the identification of host factors affecting (+)RNA virus replication. The TBSV genome codes for only five proteins, two of which are the replication proteins translated directly from the genomic RNA (45). One of these replication proteins is the abundant p33 replication cofactor; the other is the RNA-dependent RNA polymerase (RdRp) p92pol. Due to the overlapping expression strategy, p33 is identical with the N-terminal portion of the larger p92pol protein (Fig. (Fig.1A).1A). Both replication proteins contain an RNA-binding motif (arginine-proline-rich motif), phosphorylation sites that affect RNA binding by the p33 protein, a p33-p33/p92 interaction domain, and two transmembrane domains (Fig. (Fig.1A)1A) (18, 19, 32, 36, 37). Three short stretches of amino acids in p33 and p92pol are involved in binding to the Pex19p host protein that facilitates the transportation of p33 and p92pol from the cytosol to the cytosolic surface of the peroxisomes, the site of replicase complex formation and viral RNA replication (25). The essential nature of the above-named domains for obtaining functional replicase complexes suggests that multiple dynamic protein-protein, protein-RNA, and protein-membrane interactions must be required for robust tombusvirus replication.Open in a separate windowFIG. 1.Binding of Rsp5p to TBSV p33 and p92 proteins in vitro. (A) Schematic representation of viral proteins and their derivatives used in the binding assay. The various domains include the transmembrane domain (TMD), arginine-proline-rich RNA-binding domain (RPR), phosphorylated serine and threonine (P), and S1 and S2 subdomains involved in p33-p33/p92 interaction. The two RNA-binding regions in p92 are shown with boxes. (B) Affinity binding (pulldown) assay to detect interaction between GST-six-His-Rsp5p and the MBP-tagged viral proteins. The MBP-tagged viral proteins and MBP produced in E. coli were immobilized on amylose affinity columns. Then, GST-six-His-tagged Rsp5p expressed in E. coli was passed through the amylose affinity columns with immobilized MBP-tagged proteins. The affinity-bound proteins were specifically eluted with maltose from the columns. The eluted proteins were analyzed by Western blotting with anti-six-His antibody to detect the amount of GST-six-His-Rsp5p specifically bound to MBP-tagged viral proteins. (C) The amounts of MBP-tagged proteins eluted from the columns were analyzed by Coomassie blue staining of SDS-PAGE gels. (D) SDS-PAGE analysis of in vitro ubiquitination of replication protein p33 by purified recombinant Rsp5p. The components in the assays are indicated at the top. The ubiquitin-MBP-p33 product, detected by anti-six-His antibody, is marked by an arrowhead. Ub, ubiquitin; +, present; −, absent.In order to identify host genes involved in tombusvirus replication and recombination, systematic genome-wide screens that covered 95% of the host genes were performed in the model host Saccharomyces cerevisiae yeast (9, 22, 34, 35). These screens led to the identification of over 150 host genes, although the functions of these genes in TBSV replication are largely unknown. In addition, proteomics analysis of the highly purified tombusvirus replicase, as well as the use of yeast protein arrays containing ∼4,100 purified proteins to identify host proteins interacting with p33 and/or p92pol, led to the identification of ∼60 pertinent yeast proteins (12, 33). Current efforts are focused on characterizing the functions of key host proteins in TBSV replication.Most of the host factors identified facilitate tombusvirus replication, though some are inhibitory. The list of characterized host factors includes heat shock protein 70 (Hsp70), which is required for the assembly of the viral replicase in vitro, as well as for membrane insertion and intracellular targeting of the viral replication proteins in vivo (29, 43). Another important host protein is GAPDH (glyceraldehyde-3-phosphate dehydrogenase), which affects plus-strand synthesis (42). The functions of two other host factors that are also present in the replicase complex, namely, Cdc34p E2 ubiquitin-conjugating enzyme, which ubiquitinates p33 replication protein in vitro, and translation elongation factor 1A (eEF1A), which binds to a 3′ cis-acting regulatory element in the TBSV (+)RNA, are not yet characterized with respect to their roles in viral replication (12, 13). Downregulation of all four of the above-described host factors inhibited TBSV accumulation in the yeast model host and in plants (12, 13, 33, 42, 43), suggesting that they are significant players in TBSV replication.In order to further the understanding of host factor roles in viral RNA replication, this paper addresses the effect of Rsp5p E3 ubiquitin ligase on TBSV accumulation. Rsp5p was selected since we have previously found an interaction between p33 and Rsp5p, based on the yeast protein array (12). Also, p33 is mono- and biubiquitinated in yeast cells (12), and Rsp5p is known to ubiquitinate select host proteins (3). These features of Rsp5p suggest its relevance to TBSV replication. Indeed, we found that Rsp5p inhibits TBSV replication when overexpressed in yeast cells, whereas its downregulation leads to increased TBSV accumulation. The inhibition is primarily caused by Rsp5p-mediated selective degradation of p92pol. Its negative effect on the level of p33 is substantially less. However, the inhibitory function of Rsp5p is more complex, since the purified recombinant Rsp5p also inhibited RNA replication in a cell-free TBSV replication assay, likely due to the ability of Rsp5p to bind to both p33 and p92pol. Surprisingly, the inhibitory function of Rsp5p is not caused by the HECT domain, which is involved in protein ubiquitination, but by its WW domain, which is involved in protein interactions. The observations suggest that direct binding between Rsp5p and p33 and, more importantly, p92pol is likely involved in the inhibition of TBSV replication.  相似文献   

12.
To identify host proteins interacting with Tomato bushy stunt virus (TBSV) replication proteins in a genome-wide scale, we have used a yeast (Saccharomyces cerevisiae) proteome microarray carrying 4,088 purified proteins. This approach led to the identification of 58 yeast proteins that interacted with p33 replication protein. The identified host proteins included protein chaperones, ubiquitin-associated proteins, translation factors, RNA-modifying enzymes, and other proteins with yet-unknown functions. We confirmed that 19 of the identified host proteins bound to p33 in vitro or in a split-ubiquitin-based two-hybrid assay. Further analysis of Cdc34p E2 ubiquitin-conjugating enzyme, which is one of the host proteins interacting with p33, revealed that Cdc34p is a novel component of the purified viral replicase. Downregulation of Cdc34p expression in yeast, which supports replication of a TBSV replicon RNA (repRNA), reduced repRNA accumulation and the activity of the tombusvirus replicase by up to fivefold. Overexpression of wild-type Cdc34p, but not that of an E2-defective mutant of Cdc34p, increased repRNA accumulation, suggesting a significant role for the ubiquitin-conjugating enzyme function of Cdc34p in TBSV replication. Also, Cdc34p was able to ubiquitinate p33 in vitro. In addition, we have shown that p33 becomes ubiquitinated in vivo. We propose that ubiquitination of p33 likely alters its function or affects the recruitment of host factors during TBSV replication.  相似文献   

13.
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.  相似文献   

14.
15.
Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11’s interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.  相似文献   

16.
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.  相似文献   

17.
Huang TS  Nagy PD 《Journal of virology》2011,85(17):9090-9102
The replication of plus-strand RNA viruses depends on many cellular factors. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant metabolic enzyme that is recruited to the replicase complex of Tomato bushy stunt virus (TBSV) and affects asymmetric viral RNA synthesis. To further our understanding on the role of GAPDH in TBSV replication, we used an in vitro TBSV replication assay based on recombinant p33 and p92(pol) viral replication proteins and cell-free yeast extract. We found that the addition of purified recombinant GAPDH to the cell extract prepared from GAPDH-depleted yeast results in increased plus-strand RNA synthesis and asymmetric production of viral RNAs. Our data also demonstrate that GAPDH interacts with p92(pol) viral replication protein, which may facilitate the recruitment of GAPDH into the viral replicase complex in the yeast model host. In addition, we have identified a dominant negative mutant of GAPDH, which inhibits RNA synthesis and RNA recruitment in vitro. Moreover, this mutant also exhibits strong suppression of tombusvirus accumulation in yeast and in virus-infected Nicotiana benthamiana. Overall, the obtained data support the model that the co-opted GAPDH plays a direct role in TBSV replication by stimulating plus-strand synthesis by the viral replicase.  相似文献   

18.
Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.  相似文献   

19.
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号