首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Glutamyl kinase (GK) is the rate-limiting enzyme in proline synthesis in microorganisms. Most microbial GKs contain an N-terminal kinase domain and a C-terminal pseudouridine synthase and archaeosine transglycosylase (PUA) domain. In contrast, higher eukaryotes possess a bifunctional Δ1-pyrroline-5-carboxylate synthetase, which consists of a PUA-free GK domain and a γ-glutamyl phosphate reductase (GPR) domain. Here, to examine the role of the C-terminal region, including the PUA domain of Saccharomyces cerevisiae GK, we constructed a variety of truncated yeast GK and GK/GPR fusion proteins from which the C-terminal region was deleted. A complementation test in Escherichia coli and S. cerevisiae and enzymatic analysis of recombinant proteins revealed that a 67-residue linker sequence between a 255-residue kinase domain and a 106-residue PUA domain is essential for GK activity. It also appeared that 67 or more residues of the C-terminal region, not the PUA domain itself, are required for the full display of GK activity. Further, the GK/GPR fusion protein was functional in E. coli, but decreased stability and Mg-binding ability as compared to wild-type GK. These results suggest that the C-terminal region of S. cerevisiae GK is involved in the folding and/or the stability of the kinase domain.  相似文献   

2.
Protein kinase C (PKC) isoenzymes are multi-modular proteins activated at the membrane surface to regulate signal transduction processes. When activated by second messengers, PKC undergoes a drastic conformational and spatial transition from the inactive cytosolic state to the activated membrane-bound state. The complete structure of either state of PKC remains elusive. We demonstrate, using NMR spectroscopy, that the isolated Ca2+-sensing membrane-binding C2 domain of the conventional PKCα interacts with a conserved hydrophobic motif of the kinase C-terminal region, and we report a structural model of the complex. Our data suggest that the C-terminal region plays a dual role in regulating the PKC activity: activating, through sensitization of PKC to intracellular Ca2+ oscillations; and auto-inhibitory, through its interaction with a conserved positively charged region of the C2 domain.  相似文献   

3.
Highlights? Two structures of the RGS2-Gαq complex were determined by X-ray crystallography ? RGS2 binds Gαq in a manner distinct from how other RGS proteins bind Gαi/o ? In its distinct pose, RGS2 forms extensive contacts with the α-helical domain of Gαq ? Helical domain contacts contribute to binding affinity and GAP potency of RGS2  相似文献   

4.
5.
6.
Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences.  相似文献   

7.
8.
“Regulator of G-protein signaling” (RGS) proteins facilitate the termination of G protein-coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis rate of Gα subunits (known as GTPase-accelerating protein or “GAP” activity). RGS2 is unique in its in vitro potency and selectivity as a GAP for Gαq subunits. As many vasoconstrictive hormones signal via Gq heterotrimer-coupled receptors, it is perhaps not surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the particular structural features within RGS2 determining its selectivity for Gαq over Gαi/o substrates have not been completely characterized. Here, we examine a trio of point mutations to RGS2 that elicits Gαi-directed binding and GAP activities without perturbing its association with Gαq. Using x-ray crystallography, we determined a model of the triple mutant RGS2 in complex with a transition state mimetic form of Gαi at 2.8-Å resolution. Structural comparison with unliganded, wild type RGS2 and of other RGS domain/Gα complexes highlighted the roles of these residues in wild type RGS2 that weaken Gαi subunit association. Moreover, these three amino acids are seen to be evolutionarily conserved among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the R4-subfamily of RGS proteins to have specialized activity as a potent and selective Gαq GAP that modulates cardiovascular function.G protein-coupled receptors (GPCRs)4 form an interface between extracellular and intracellular physiology, as they convert hormonal signals into changes in intracellular metabolism and ultimately cell phenotype and function (13). GPCRs are coupled to their underlying second messenger systems by heterotrimeric guanine nucleotide-binding protein (“G-proteins”) composed of three subunits: Gα, Gβ, and Gγ. Four general classes of Gα subunits have been defined based on functional couplings (in the GTP-bound state) to various effector proteins. Gs subfamily Gα subunits are stimulatory to membrane-bound adenylyl cyclases that generate the second messenger 3′,5′-cyclic adenosine monophosphate (cAMP); conversely, Gi subfamily Gα subunits are generally inhibitory to adenylyl cyclases (4). G12/13 subfamily Gα subunits activate the small G-protein RhoA through stimulation of the GEF subfamily of RGS proteins, namely p115-RhoGEF, LARG, and PDZ-RhoGEF (5). Gq subfamily Gα subunits are potent activators of phospholipase-Cβ enzymes that generate the second messengers diacylglycerol and inositol triphosphate (6); more recently, two additional Gαq effector proteins have been described: the receptor kinase GRK2 and the RhoA nucleotide exchange factor p63RhoGEF (7, 8).The duration of GPCR signaling is controlled by the time Gα remains bound to GTP before its hydrolysis to GDP. RGS proteins are key modulators of GPCR signaling by virtue of their ability to accelerate the intrinsic GTP hydrolysis activity of Gα subunits (reviewed in Refs. 9 and 10). RGS2/G0S8, one of the first mammalian RGS proteins identified (11) and member of the R4-subfamily (10), has a critical role in the maintenance of normostatic blood pressure both in mouse models (12, 13) and in humans (14, 15); additionally, Rgs2-deficient mice exhibit impaired aggression and increased anxiety (16, 17), behavioral phenotypes with potential human clinical correlates (18, 19).Although many RGS proteins are promiscuous and thus act on multiple Gα substrates in vitro (e.g. Ref. 20), RGS2 exhibits exquisite specificity for Gαq in biochemical binding assays and single turnover GTPase acceleration assays (20, 21). Consistent with this in vitro selectivity,5 mice deficient in RGS2 uniquely exhibit constitutive hypertension and prolonged responses to vasoconstrictors, as would be expected upon loss of a potent negative regulator of Gαq that mediates signaling from various vasoconstrictive hormones such as angiotensin II, endothelin, thrombin, norepinephrine, and vasopressin (22). In addition, RGS2-deficient mice respond to sustained pressure overload with an accelerated time course of maladaptive cardiac remodeling (23), a pathophysiological response that evokes myocardial hypertrophy known to be critically dependent on Gαq signaling (24, 25).To gain insight into the structural basis of the unique Gα substrate selectivity exhibited by RGS2, a series of point mutants in RGS2 were evaluated that enable this protein to bind and accelerate GTP hydrolysis by Gαi; we subsequently delineated the structural determinants of the Gαi/mutant RGS2 interaction using x-ray crystallography. Three key positions, first identified by Heximer and colleagues (21) and highlighted in our structural studies as key determinants of RGS2 substrate selection, were also found to be conserved throughout the evolution of the RGS2 protein in a manner suggestive of specialization toward cardiovascular signaling modulation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The structural organization of the amyloidogenic β-protein containing 40 amino acid residues (Aβ40) was studied by the high temperature molecular dynamics simulations in the acidic (pH ∼ 3) and basic (pH ∼ 8) pH regions. The obtained data suggest that the central Ala21-Gly29 segment of Aβ40 can adopt folded and partially unfolded structures. At the basic pH, this segment forms folded structures stabilized by electrostatic interactions and hydrogen bonds. At the acidic pH, it forms partially unfolded structures. Two other segments flanking to the central segment exhibit the propensity to adopt unstable interconverting α-helical, 310-helical and turn-like structures. One of these segments is comprised of the Ala30-Val36 residues at both of the considered pHs. The second segment is comprised of the Glu11-Phe20 at the basic pH and of the Glu11-Val24 residues at the acidic pHs. The revealed pH-dependent structuration of the Aβ40 allowed us to suggest a possible scenario for initial Aβ aggregation. According to this scenario, the occurrence of the partially unfolded states of the Ala21-Gly29 segment plays main role in the Aβ oligomerization process.Key words: amyloid-β protein, Alzheimer disease, oligomerization, fibril, electrostatic interactions, molecular dynamics simulations  相似文献   

16.
Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.  相似文献   

17.

Background

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.

Methods

In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques.

Results

We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells.

Conclusion

Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.  相似文献   

18.
19.
20.
Regulator of G protein signaling 4 (RGS4) is a critical modulator of G protein-coupled receptor (GPCR)-mediated signaling and plays important roles in many neural process and diseases. Particularly, drug-induced alteration in RGS4 protein levels is associated with acute and chronic effects of drugs of abuse. However, the precise mechanism underlying the regulation of RGS4 expression is largely unknown. Here, we demonstrated that the expression of RGS4 gene was subject to regulation by alternative splicing of the exon 6. Transformer-2β (Tra2β), an important splicing factor, bound to RGS4 mRNA and increased the relative level of RGS4-1 mRNA isoform by enhancing the inclusion of exon 6. Meanwhile, Tra2β increased the expression of full-length RGS4 protein. In rat brain, Tra2β was co-localized with RGS4 in multiple opioid action-related brain regions. In addition, the acute and chronic morphine treatment induced alteration in the expression level of Tra2β in rat locus coerulus (LC) in parallel to that of RGS4 proteins. It suggests that induction of this splicing factor may contribute to the change of RGS4 level elicited by morphine. Taken together, the results provide the evidence demonstrating the function of Tra2β as a new mediator in opioid-induced signaling pathway via regulating RGS4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号