首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E6 proteins from high-risk, cancer-causing types of human papillomavirus (HPV) are characterized by the presence of a PDZ (PSD95/Dlg/ZO-1) binding motif in their extreme carboxy termini, through which they interact with a number of cellular PDZ domain-containing substrates. In order to ascertain how many of these are degraded by E6 in vivo, we performed an extensive analysis of the effects of E6 ablation on the expression levels of a number of previously reported E6 PDZ substrates. Using HPV type 16 (HPV-16)-positive CaSKi cells and HPV-18-positive HeLa cells, we have found that MAGI-1 is a major degradation target of both HPV-16 and HPV-18 E6. In contrast, hDlg, hScrib, PTPN3, TIP2, FAP1, and PSD95 all exhibit various degrees of susceptibility to E6-induced degradation, and a high degree of HPV type specificity is observed for certain substrates. We also show that E6 preferentially targets MAGI-1 within the nucleus and at membrane sites. One of the direct consequences of MAGI-1 degradation is a loss of tight-junction integrity, as determined by mislocalization of the tight-junction protein ZO-1. Ablation of E6 expression restores tight junctions, and this restoration is dependent on the presence of MAGI-1. These results demonstrate that oncogenic HPV E6 proteins disrupt cellular tight junctions through the degradation of MAGI-1, and they provide further evidence of how the PDZ binding potential of E6 can contribute to HPV-induced malignancy.  相似文献   

2.
3.
A subset of high-risk Human Papillomaviruses (HPVs) are the causative agents of a large number of human cancers, of which cervical is the most common. Two viral oncoproteins, E6 and E7, contribute directly towards the development and maintenance of malignancy. A characteristic feature of the E6 oncoproteins from cancer-causing HPV types is the presence of a PDZ binding motif (PBM) at its C-terminus, which confers interaction with cellular proteins harbouring PDZ domains. Here we show that this motif allows E6 interaction with Sorting Nexin 27 (SNX27), an essential component of endosomal recycling pathways. This interaction is highly conserved across E6 proteins from multiple high-risk HPV types and is mediated by a classical PBM-PDZ interaction but unlike many E6 targets, SNX27 is not targeted for degradation by E6. Rather, in HPV-18 positive cell lines the association of SNX27 with components of the retromer complex and the endocytic transport machinery is altered in an E6 PBM-dependent manner. Analysis of a SNX27 cargo, the glucose transporter GLUT1, reveals an E6-dependent maintenance of GLUT1 expression and alteration in its association with components of the endocytic transport machinery. Furthermore, knockdown of E6 in HPV-18 positive cervical cancer cells phenocopies the loss of SNX27, both in terms of GLUT1 expression levels and its vesicular localization, with a concomitant marked reduction in glucose uptake, whilst loss of SNX27 results in slower cell proliferation in low nutrient conditions. These results demonstrate that E6 interaction with SNX27 can alter the recycling of cargo molecules, one consequence of which is modulation of nutrient availability in HPV transformed tumour cells.  相似文献   

4.
The high-risk human papillomavirus (HPV) E6 proteins stimulate the ubiquitination and degradation of p53, dependent on the E6AP ubiquitin-protein ligase. Other proteins have also been shown to be targeted for degradation by E6, including hDlg, the human homolog of the Drosophila melanogaster Discs large (Dlg) tumor suppressor. We show here that the human homolog of the Drosophila Scribble (Vartul) (hScrib) tumor suppressor protein is also targeted for ubiquitination by the E6-E6AP complex in vitro and that expression of E6 induces degradation of hScrib in vivo. Characterization of the E6AP-E6-hScrib complex indicated that hScrib binds directly to E6 and that the binding is mediated by the PDZ domains of hScrib and a carboxyl-terminal epitope conserved among the high-risk HPV E6 proteins. Green fluorescent protein-hScrib was localized to the periphery of MDCK cells, where it colocalized with ZO-1, a component of tight junctions. E6 expression resulted in loss of integrity of tight junctions, as measured by ZO-1 localization, and this effect was dependent on the PDZ binding epitope of E6. Thus, the high-risk HPV E6 proteins induce the degradation of the human homologs of two Drosophila PDZ domain-containing tumor suppressor proteins, hDlg and hScrib, both of which are associated with cell junction complexes. The fact that Scrib/Vart and Dlg appear to cooperate in a pathway that controls Drosophila epithelial cell growth suggests that the combined targeting of hScrib and hDlg is an important component of the biologic activity of high-risk HPV E6 proteins.  相似文献   

5.
High-risk human papillomavirus (HPV) E6 proteins have a C-terminal PDZ binding motif through which they bind, and target for proteasome-mediated degradation, a number of PDZ-containing cellular targets. Recent studies have suggested that the RING-containing ubiquitin-protein ligase PDZRN3 might also be an HPV E6 target. In this analysis, we show that HPV-16 and HPV-18 E6 can target PDZRN3 in a PDZ- and proteasome-dependent manner and provide a connection between the HPV life cycle and differentiation-related STAT signaling.  相似文献   

6.
Lee C  Laimins LA 《Journal of virology》2004,78(22):12366-12377
A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. The presence of this motif only in the high-risk HPVs suggests its possible role in HPV-induced oncogenesis. To investigate the role of the PDZ domain-binding motif of E6 in the HPV life cycle, two mutant HPV31 genomes were constructed: E6ValDelta, with a deletion of the last amino acid residue of E6 (valine), and E6ETQVDelta, with a deletion of the entire PDZ domain-binding motif of E6 (ETQV). Three human foreskin keratinocyte (HFK) cell lines were established which maintained transfected wild-type HPV31 or either of two mutant genomes. Cells containing either of two mutant genomes were significantly retarded in their growth rates and reduced in their viral copy numbers compared to those transfected with wild-type genomes. Western analysis did not reveal any significant changes in the levels of PDZ proteins following stable transfection of any HPV31 genomes into HFKs. Although the E6ETQVDelta-transfected HFKs exhibited a pattern of morphological differentiation that appeared different from the HPV31 wild-type-transfected HFKs in organotypic raft cultures, immunohistochemical analysis failed to identify substantial changes in the differentiation-dependent membrane localization of hDlg proteins. These results suggest that binding of E6 to PDZ proteins modulates the early viral functions such as proliferation and maintenance of the viral copy number in undifferentiated cells.  相似文献   

7.
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.  相似文献   

8.
Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.  相似文献   

9.
The high-risk human papilloma virus (HPV) oncoproteins E6 and E7 interact with key cellular regulators and are etiological agents for tumorigenesis and tumor maintenance in cervical cancer and other malignant conditions. E6 induces degradation of the tumor suppressor p53, activates telomerase and deregulates cell polarity. Analysis of E6 derived from a number of high risk HPV finally yielded the first structure of a wild-type HPV E6 domain (PDB 2M3L) representing the second zinc-binding domain of HPV 51 E6 (termed 51Z2) determined by NMR spectroscopy. The 51Z2 structure provides clues about HPV-type specific structural differences between E6 proteins. The observed temperature sensitivity of the well-folded wild-type E6 domain implies a significant malleability of the oncoprotein in vivo. Hence, the structural differences between individual E6 and their malleability appear, together with HPV type-specific surface exposed side-chains, to provide the structural basis for the different interaction networks reported for individual E6 proteins. Furthermore, the interaction of 51Z2 with a PDZ domain of hDlg was analyzed. Human Dlg constitutes a prototypic representative of the large family of PDZ proteins regulating cell polarity, which are common targets of high-risk HPV E6. Nine C-terminal residues of 51Z2 interact with the second PDZ domain of hDlg2. Surface plasmon resonance in conjunction with the NMR spectroscopy derived complex structure (PDB 2M3M) indicate that E6 residues N-terminal to the canonical PDZ-BM of E6 significantly contribute to this interaction and increase affinity. The structure of the complex reveals how residues outside of the classical PDZ-BM enhance the affinity of E6 towards PDZ domains. Such mechanism facilitates successful competition of E6 with cellular PDZ-binding proteins and may apply to PDZ-binding proteins of other viruses as well.  相似文献   

10.
Leukocyte transendothelial migration involves the active participation of the endothelium through the formation of apical membrane protrusions that embrace adherent leukocytes, termed docking structures. Using live-cell imaging, we find that prior to transmigration, endothelial docking structures form around 80% of all neutrophils. Previously we showed that endothelial RhoG and SGEF control leukocyte transmigration. In this study, our data reveal that both full-length Trio and the first DH-PH (TrioD1) domain of Trio, which can activate Rac1 and RhoG, interact with ICAM-1 and are recruited to leukocyte adhesion sites. Moreover, upon clustering of ICAM-1, the Rho-guanine nucleotide exchange factor Trio activates Rac1, prior to activating RhoG, in a filamin-dependent manner. We further show that docking structure formation is initiated by ICAM-1 clustering into ring-like structures, which is followed by apical membrane protrusion. Interestingly, we find that Rac1 is required for ICAM-1 clustering, whereas RhoG controls membrane protrusion formation. Finally, silencing endothelial Trio expression or reducing TrioD1 activity without affecting SGEF impairs both docking structure formation and leukocyte transmigration. We conclude that Trio promotes leukocyte transendothelial migration by inducing endothelial docking structure formation in a filamin-dependent manner through the activation of Rac1 and RhoG.  相似文献   

11.
During trans-endothelial migration (TEM), leukocytes use adhesion receptors such as intercellular adhesion molecule-1 (ICAM1) to adhere to the endothelium. In response to this interaction, the endothelium throws up dynamic membrane protrusions, forming a cup that partially surrounds the adherent leukocyte. Little is known about the signaling pathways that regulate cup formation. In this study, we show that RhoG is activated downstream from ICAM1 engagement. This activation requires the intracellular domain of ICAM1. ICAM1 colocalizes with RhoG and binds to the RhoG-specific SH3-containing guanine-nucleotide exchange factor (SGEF). The SH3 domain of SGEF mediates this interaction. Depletion of endothelial RhoG by small interfering RNA does not affect leukocyte adhesion but decreases cup formation and inhibits leukocyte TEM. Silencing SGEF also results in a substantial reduction in RhoG activity, cup formation, and TEM. Together, these results identify a new signaling pathway involving RhoG and its exchange factor SGEF downstream from ICAM1 that is critical for leukocyte TEM.  相似文献   

12.
SGEF (SH3-containing Guanine Nucleotide Exchange Factor) is a RhoGEF of unknown function. We found the SGEF protein to be expressed in many established cell lines and highly expressed in human liver tissue. SGEF stimulated the formation of large interconnected membrane ruffles across dorsal surfaces when expressed in fibroblasts. SGEF required its proline-rich amino-terminus to generate dorsal, but not lateral, membrane ruffles and a functional SH3 domain to colocalize with filamentous actin at sites of membrane protrusion. Full-length SGEF activated RhoG, but not Rac, when expressed in fibroblasts. Further, recombinant SGEF DH/PH protein exchanged nucleotide on RhoG, but not on Rac1 or Rac3, in vitro. Scanning electron microscopy of fibroblasts demonstrated that SGEF induced dorsal ruffles that were morphologically similar to those generated by constitutively active RhoG, but not constitutively active Rac1. Transient expression of SGEF stimulated fibroblast uptake of 10-kDa dextran, a marker of macropinocytosis. This required the full-length protein and a catalytically active DH domain. Finally, activated RhoG was found to be more effective than activated Rac, and comparable to SGEF, in its ability to trigger dextran uptake. Together, this work establishes SGEF as a RhoG exchange factor and provides evidence that both SGEF and RhoG regulate membrane dynamics in promotion of macropinocytosis.  相似文献   

13.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

14.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   

15.
Human papillomavirus (HPV) E6 oncoproteins target many cellular proteins for ubiquitin-mediated proteasomal degradation. In the case of p53, this is mediated principally by the E6AP ubiquitin ligase. Several studies have reported that E6 can target certain of its substrates in an apparently E6AP-independent fashion and that several of these substrates vary in the degree to which they are degraded by E6 at different stages of malignancy. To more fully understand the regulation of the E6AP/E6 proteolytic targeting complex, we performed a mass spectroscopic analysis of HPV type 18 (HPV-18) E6 protein complexes and identified the HECT domain-containing ubiquitin ligase EDD as a new HPV-18 E6 binding partner. We show that EDD can interact independently with both E6 and E6AP. Furthermore, EDD appears to regulate E6AP expression levels independently of E6, and loss of EDD stimulates the proteolytic activity of the E6/E6AP complex. Conversely, higher levels of EDD expression protect a number of substrates from E6-induced degradation, partly as a consequence of lower levels of E6 and E6AP expression. Intriguingly, reduction in EDD expression levels in HPV-18-positive HeLa cells enhances cell resistance to apoptotic and growth arrest stimuli. These studies suggest that changes in the levels of EDD expression during different stages of the viral life cycle or during malignancy could have a profound effect upon the ability of E6 to target various substrates for proteolytic degradation and thereby directly influence the development of HPV-induced malignancy.  相似文献   

16.
17.
The human papillomavirus (HPV) E6 oncoprotein is fundamental to the ability of these viruses to induce human malignancy. A defining characteristic of the HPV E6 oncoproteins found in cancer-causing HPV types is the presence of a PDZ binding motif at their extreme C-terminus. Through this motif, E6 is able to interact with a large number of cellular proteins that contain PDZ domains. Many of these cellular proteins are involved in regulation of processes associated with the control of cell attachment, cell proliferation, cell polarity and cell signaling. How E6 targets multiple proteins containing the same recognition domain is still an open question. In this review, we highlight aspects of E6 function and biology that help to answer this question, and thereby provide insight into the role of these substrates during development of HPV-induced malignancy.  相似文献   

18.
19.
The passage of leukocytes across the endothelium and into arterial walls is a critical step in the development of atherosclerosis. Previously, we showed in vitro that the RhoG guanine nucleotide exchange factor SGEF (Arhgef26) contributes to the formation of ICAM-1-induced endothelial docking structures that facilitate leukocyte transendothelial migration. To further explore the in vivo role of this protein during inflammation, we generated SGEF-deficient mice. When crossed with ApoE null mice and fed a Western diet, mice lacking SGEF showed a significant decrease in the formation of atherosclerosis in multiple aortic areas. A fluorescent biosensor revealed local activation of RhoG around bead-clustered ICAM-1 in mouse aortic endothelial cells. Notably, this activation was decreased in cells from SGEF-deficient aortas compared to wild type. In addition, scanning electron microscopy of intimal surfaces of SGEF−/− mouse aortas revealed reduced docking structures around beads that were coated with ICAM-1 antibody. Similarly, under conditions of flow, these beads adhered less stably to the luminal surface of carotid arteries from SGEF −/− mice. Taken together, these results show for the first time that a Rho-GEF, namely SGEF, contributes to the formation of atherosclerosis by promoting endothelial docking structures and thereby retention of leukocytes at athero-prone sites of inflammation experiencing high shear flow. SGEF may therefore provide a novel therapeutic target for inhibiting the development of atherosclerosis.  相似文献   

20.
The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include 1H, 13C and 15N resonances for the protein and peptide in the complex and all of the peptide’s pyroglutamic acid nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号