首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The focal adhesion kinase Pyk2 integrates signals from cell adhesion receptors, growth factor receptors, and G-protein-coupled receptors leading to the activation of intracellular signaling pathways that regulate cellular phenotypes. The intrinsic mechanism for the activation of Pyk2 activity remains to be fully defined. Previously, we reported that mutations in the N-terminal FERM domain result in loss of Pyk2 activity and expression of the FERM domain as an autonomous fragment inhibits Pyk2 activity. In the present study, we sought to determine the mechanism that underlies these effects. Utilizing differentially epitope-tagged Pyk2 constructs, we observed that Pyk2 forms oligomeric complexes in cells and that complex formation correlates positively with tyrosine phosphorylation. Similarly, when expressed as an autonomous fragment, the Pyk2 FERM domain formed a complex with other Pyk2 FERM domains but not the FAK FERM domain. When co-expressed with full-length Pyk2, the autonomously expressed Pyk2 FERM domain formed a complex with full-length Pyk2 preventing the formation of Pyk2 oligomers and resulting in reduced Pyk2 phosphorylation. Deletion of the FERM domain from Pyk2 enhanced Pyk2 complex formation and phosphorylation. Together, these data indicate that the Pyk2 FERM domain is involved in the regulation of Pyk2 activity by acting to regulate the formation of Pyk2 oligomers that are critical for Pyk2 activity.  相似文献   

2.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.  相似文献   

3.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

4.
5.
Phosphodiesterase 2A (PDE2A) is stimulated by cGMP to hydrolyze cAMP, a potent endothelial barrier-protective molecule. We previously found that lung PDE2A contributed to a mouse model of ventilator-induced lung injury (VILI). The purpose of the present study was to determine the contribution of PDE2A in a two-hit mouse model of 1-day intratracheal (IT) LPS followed by 4 h of 20 ml/kg tidal volume ventilation. Compared with IT water controls, LPS alone (3.75 μg/g body wt) increased lung PDE2A mRNA and protein expression by 6 h with a persistent increase in protein through day 4 before decreasing to control levels on days 6 and 10. Similar to the PDE2A time course, the peak in bronchoalveolar lavage (BAL) neutrophils, lactate dehydrogenase (LDH), and protein concentration also occurred on day 4 post-LPS. IT LPS (1 day) and VILI caused a threefold increase in lung PDE2A and inducible nitric oxide synthase (iNOS) and a 24-fold increase in BAL neutrophilia. Compared with a control adenovirus, PDE2A knockdown with an adenovirus expressing a short hairpin RNA administered IT 3 days before LPS/VILI effectively decreased lung PDE2A expression and significantly attenuated BAL neutrophilia, LDH, protein, and chemokine levels. PDE2A knockdown also reduced lung iNOS expression by 53%, increased lung cAMP by nearly twofold, and improved survival from 47 to 100%. We conclude that in a mouse model of LPS/VILI, a synergistic increase in lung PDE2A expression increased lung iNOS and alveolar inflammation and contributed significantly to the ensuing acute lung injury.  相似文献   

6.
Pyk2 is a non-receptor tyrosine kinase that regulates cellular adhesion. We generated antibodies to a peptide corresponding to the N-terminus (NT) of Pyk2 and another to a portion of the C-terminal (CT) domain. Only the CT antiserum recovered paxillin-associated Pyk2. These antibodies recognized overlapping but biochemically distinct molecular species of Pyk2 since the CT antiserum recovered Pyk2 after NT antibody immunodepletion. Furthermore, the CT antibody could not immunoblot NT antibody-captured Pyk2. Phosphorylation partially accounts for the differential binding of these antibodies as dephosphorylation of Pyk2 recovered with the NT antibodies allows for recognition by the CT antibody. Additionally, Pyk2 recovered with the NT antibody displays increased serine/threonine phosphorylation. We suggest that the NT epitope is inaccessible to the antibody because Pyk2 is in a closed confirmation in association with paxillin. Upon induction of serine and/or threonine phosphorylation of Pyk2, it opens to a confirmation that allows for antibody binding to the NT epitope but at the same time no longer binds paxillin or the CT antiserum. These antibodies also display differential staining of Pyk2 in both T cells and macrophages. Pyk2 recognized by the CT antibody, but not the NT antibody, colocalized with paxillin at the microtubule-organizing center (MTOC). The MTOC-bound Pyk2 was not tyrosine phosphorylated upon T cell activation. We hypothesize that a reservoir of primarily inactive Pyk2 associates with paxillin at the MTOC, which may allow for rapid delivery of Pyk2 to specific sites of adhesion.  相似文献   

7.
MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.  相似文献   

8.
Here we investigate the effects of the green tea extract in an animal model of acute inflammation, carrageenan-induced pleurisy. We report here that green tea extract (given at 25 mg/kg i.p. bolus 1 h prior to carrageenan), exerts potent anti-inflammatory effects in an animal model of acute inflammation in vivo.Injection of carrageenan (2%) into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity that contained many neutrophils (PMNs), an infiltration of PMNs in lung tissues and increased production of nitrite/nitrate, tumour necrosis factor alpha. All parameters of inflammation were attenuated by green tea extract treatment. Furthermore, carrageenan induced an up-regulation of the adhesion molecule ICAM-1, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) formation, as determined by immunohistochemical analysis of lung tissues. Staining for the ICAM-1, nitrotyrosine, and PARS was reduced by green tea extract.Our results clearly demonstrate that treatment with green tea extract exerts a protective effect and offers a novel therapeutic approach for the management of lung injury.  相似文献   

9.
The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma.  相似文献   

10.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

11.
Tryptase inhibition blocks airway inflammation in a mouse asthma model   总被引:11,自引:0,他引:11  
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation.  相似文献   

12.
Allergic airways disease (AAD) is associated with an increased influx of eosinophils to the lungs, mucus hypersecretion and Th2 cytokine production. Dietary antioxidant supplementation may alter cytokine responses and thus allergic inflammation. Lycopene is a potent dietary antioxidant. The objective of this study was to investigate the effects of lycopene, on allergic inflammation, in a mouse model of AAD. BALB/c mice receiving lycopene supplement or control were intraperitoneally sensitised and intranasally challenged with ovalbumin (OVA) to induce AAD. The effect of supplementation on inflammatory cell influx into bronchoalveolar lavage fluid, lung tissue and blood, mucus-secreting cell numbers in the airways, draining lymph node OVA-specific cytokine release, serum IgG1 levels and lung function in AAD was assessed. Supplementation reduced eosinophilic infiltrates in the bronchoalveolar lavage fluid, lung tissue and blood, and mucus-secreting cell numbers in the airways. The OVA-specific release of Th2-associated cytokines IL-4 and IL-5 was also reduced. We conclude that supplementation with lycopene reduces allergic inflammation both in the lungs and systemically, by decreasing Th2 cytokine responses. Thus, lycopene supplementation may have a protective effect against asthma.  相似文献   

13.
We have recently demonstrated that multiple signalling pathways are involved in thrombin-induced proliferation in rat astrocytes. Thrombin acts by protease-activated receptor-1 (PAR-1) via mitogen-activated protein kinase activity. Signalling includes both Gi/(betagamma subunits)-phosphatidylinositol 3-kinase and a Gq-phospholipase C/Ca2+/protein kinase C (PKC) pathway. In the present study, we investigated the possible protein tyrosine kinases which might be involved in thrombin signalling cascades. We found that, in astrocytes, thrombin can evoke phosphorylation of proline-rich tyrosine kinase (Pyk2) via PAR-1. This process is dependent on the increase in intracellular Ca2+ and PKC activity. Moreover, in response to thrombin stimulation Pyk2 formed a complex with Src tyrosine kinase and adapter protein growth factor receptor-bound protein 2 (Grb2), which could be coprecipitated. Furthermore, both thrombin-induced Pyk2 phosphorylation and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation can be attenuated by Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. From these data we conclude that PAR-1 uses Ca2+- and PKC-dependent Pyk2 to activate Src, thereby leading to ERK1/2 activation, which predominantly recruits Grb2 in rat astrocytes.  相似文献   

14.
炎症反应是宿主重要防御机制之一。慢性炎症或过度炎症反应可导致严重的肺部疾病,如哮喘、急性呼吸窘迫综合征等。新近研究表明炎症消退是一个主动过程,炎症的及时消退是防止炎症过强及走向慢性化的关键环节。因此,调控炎症消退的内源性介质成为新的研究热点。促进炎症消退内源性介质的发现不仅为肺部疾病研究提供新视野,也为全新的促炎症消退治疗策略防治肺部疾病提供理论依据。  相似文献   

15.
We have investigated gene and protein expression of ST2/ST2L in a murine alveolar macrophage (AM) cell line, MH-S, reacting to inflammatory stimuli in vitro and in the lung tissue of an acute lung injury model in vivo. We have also analyzed the effect of soluble ST2 protein on inflammatory response of MH-S cells. Lipopolysaccharide (LPS) and proinflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha induced ST2 mRNA expression in MH-S cells. In an acute lung injury model, protein and mRNA expression levels of ST2 increased to the maximal level at 24-72h after the LPS challenge. Furthermore, pretreatment with ST2 protein significantly reduced the protein production and gene expression of IL-1alpha, IL-6, and TNF-alpha in LPS-stimulated MH-S cells in vitro. These results suggest that increases in endogenous ST2 protein in AM, which is induced by inflammatory stimuli, such as LPS and proinflammatory cytokines, may modulate acute lung inflammation.  相似文献   

16.
The cell surface receptor integrin is involved in signaling mechanical stresses via the focal adhesion complex (FAC) into the cell. Within FAC, the focal adhesion kinase (FAK) and Pyk2 are believed to act as important scaffolding proteins. Based on the knowledge that many signal transducing molecules are transiently immobilized within FAC connecting the cytoskeleton with integrins, we applied magnetic tweezer and atomic force microscopic measurements to determine the influence of FAK and Pyk2 in cells mechanically. Using mouse embryonic fibroblasts (MEF; FAK+/+, FAK−/−, and siRNA-Pyk2 treated FAK−/− cells) provided a unique opportunity to describe the function of FAK and Pyk2 in more detail and to define their influence on FAC and actin distribution.  相似文献   

17.
目的探讨人参皂苷Rb1(G-Rb1)对肺损伤小鼠抗氧化酶活力的影响。方法将195只6~8周龄BALB/c小鼠随机分为对照组、肺损伤模型组(ALI组)、人参皂苷Rb1组(G-Rb1组),每组65只。ALI与G-Rb1组采用100μL SI A/swine/HeBei/012/2008/猪流感病毒(H9N2 SIV)经鼻腔接种建立急性肺损伤模型,同时G-Rb1组腹腔注射人参皂苷Rb1液0.1 mL,剂量为10 mg/(kg·bw),连续7d;对照组鼻腔接种相同剂量生理盐水稀释的正常鸡胚尿囊液。观察临床症状、肺病理组织学变化,计算小鼠肺湿干重比、肺系数,检测小鼠肺组织T-SOD、MPO、CAT、GSH-PX活力。结果从第2天末开始ALI组大部分小鼠出现高度的精神沉郁,呼吸极度困难,采食量明显减少,体重下降。肺部明显水肿、淤血和出血,炎性细胞渗出,对照组小鼠各器官未见异常。肺系数及肺干湿重比逐渐升高,第8天开始下降,第14天趋于正常。G-Rb1组症状明显轻于攻毒组,症状出现较缓,症状较轻,死亡时间延迟,死亡率降低。在第4、6、8天,与对照组比G-Rb1组和ALI组T-SOD及CAT活力显著降低(P0.01),组间比,G-Rb1组明显高于ALI组(P0.05);在各时间点,与对照组比,ALI组GSH-PX活力显著降低(P0.01),而GRb1组则显著升高(P0.01),实验组组间差异显著(P0.01)。结论 G-Rb1在一定浓度范围内,具有提高小鼠抗氧化酶活力作用,一定程度上改善H9N2猪流感病毒对肺组织的氧化损伤。  相似文献   

18.
The mechanism of agonist-induced activation of Pyk2 and its relationship with ERK1/2 phosphorylation was analyzed in HEK293 cells stably expressing the gonadotropin releasing hormone (GnRH) receptor. GnRH stimulation caused rapid and sustained phosphorylation of ERK1/2 and Pyk2 that was accompanied by their nuclear translocation. Pyk2 was also localized on cell membranes and at focal adhesions. Dominant negative Pyk2 (PKM) had no effect on GnRH-induced ERK1/2 phosphorylation and c-fos expression. These actions of GnRH on ERK1/2 and Pyk2 were mimicked by activation of protein kinase C (PKC) and were abolished by its inhibition. GnRH caused translocation of PKC and δ, but not of , ι and λ, to the cell membrane, as well as phosphorylation of Raf at Ser338, a major site in the activation of MEK/ERK1/2. Stimulation of HEK293 cells by EGF caused marked ERK1/2 phosphorylation that was attenuated by the selective EGFR receptor (EGF-R) kinase inhibitor, AG1478. However, GnRH-induced ERK1/2 activation was independent of EGF-R activation. These results indicate that activation of PKC is responsible for GnRH-induced phosphorylation of both ERK1/2 and Pyk2, and that Pyk2 activation does not contribute to GnRH signaling. Moreover, GnRH-induced phosphorylation of ERK1/2 and expression of c-fos in HEK293 cells is independent of Src and EGF-R transactivation, and is mediated through the PKC/Raf/MEK cascade.  相似文献   

19.
Schistosoma parasites are blood flukes that infect an estimated 200 million people worldwide. In chronic infection with Schistosoma, the severe pathology, including liver fibrosis and splenomegaly, is caused by the immune response to the parasite eggs rather than the parasite itself. Parasite eggs induce a Th2 response characterized by the production of IL-4, IL-5 and IL-13, the alternative activation of macrophages and the recruitment of eosinophils. Here, we describe injection of Schistosoma mansoni eggs as a model to examine parasite-specific Th2 cytokine responses in the lung and draining lymph nodes, the formation of pulmonary granulomas surrounding the egg, and airway inflammation. Following intraperitoneal sensitization and intravenous challenge, S. mansoni eggs are transported to the lung via the pulmonary arteries where they are trapped within the lung parenchyma by granulomas composed of lymphocytes, eosinophils and alternatively activated macrophages. Associated with granuloma formation, inflammation in the broncho-alveolar spaces, expansion of the draining lymph nodes and CD4 T cell activation can be observed. Here we detail the protocol for isolating Schistosoma mansoni eggs from infected livers (modified from), sensitizing and challenging mice, and recovering the organs (broncho-alveolar lavage (BAL), lung and draining lymph nodes) for analysis. We also include representative histologic and immunologic data and suggestions for additional immunologic analysis. Overall, this method provides an in vivo model to investigate helminth-induced immunologic responses in the lung, which is broadly applicable to the study of Th2 inflammatory diseases including helminth infection, fibrotic diseases, allergic inflammation and asthma. Advantages of this model for the study of type 2 inflammation in the lung include the reproducibility of a potent Th2 inflammatory response in the lung and draining lymph nodes, the ease of assessment of inflammation by histologic examination of the granulomas surrounding the egg, and the potential for long-term storage of the parasite eggs.  相似文献   

20.
G-protein-coupled receptor agonists (GPCAs) cause functional responses in endothelial cells including secretion, proliferation, and altering monolayer permeability. These events are mediated in part by activation of the p42/44 mitogen-activated protein kinase (MAPK) cascade. The cytosolic tyrosine kinase Pyk2 is postulated to link GPCA-induced changes in intracellular calcium to activation of the MAP kinase cascade. We have investigated the regulation of Pyk2 in human umbilical vein endothelial cells in response to GPCAs and show that (1) thrombin, a PAR-1 peptide, and histamine cause rapid concentration- and time-dependent phosphorylation on tyrosines 402 (Src kinase binding site), 881 (Grb2 binding site), and 580 (an autophosphorylation site), (2) thrombin-stimulated phosphorylation is dependent on intracellular calcium and independent of PKC and PI-3 kinase, and (3) inhibition of Src kinases has no significant effect on thrombin-stimulated phosphorylation, implying that tyrosine phosphorylation of Pyk2 is independent of Src binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号