首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damage to DNA and disruption of membrane integrity by lipid peroxidation processes are two of the proposed causes of UV‐B‐induced growth inhibition in plants. However, the relative significance of these different types of molecular damage has not been established in experiments carried out under realistic physiological conditions. Plants of Gunnera magellanica (a native herb from southern Patagonia) were exposed to a gradient of biologically effective UV‐B doses (from 0 to 6.5 kJ m?2 d?1 of UV‐Bbe) in a greenhouse study. Leaf expansion was measured and sensitive techniques were used to detect damage to DNA (in the form of cyclobutane pyrimidine dimers; CPDs) and lipid peroxidation (via electronic‐paramagnetic resonance; EPR). Leaf expansion decreased and the CPD density increased with increasing UV‐B doses, but the degree of lipid peroxidation remained unaffected. The highest UV‐B dose induced a transient oxidative stress situation (as evaluated using the ratio of ascorbyl radical to ascorbate, A·/AH), which was rapidly controlled by an increase in the ascorbate pool. The present results suggest that under a range of UV‐Bbe doses that overlaps the range of doses that G. magellanica plants experience in their natural environment, growth inhibition is better explained by DNA damage than by increased lipid peroxidation.  相似文献   

2.
To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m-2 day-1 plant-weighted UV-B against a background of 850–950 μmol m-2 s-1 photosynthetically active radiation. In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m-2 day-1 UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5–30%, plant dry weight by 12–30%, and plant height by 24–38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B.  相似文献   

3.
Tropical regions receive the highest level of global solar ultraviolet (UV) radiation especially UV-B (280-320 nm). The average daily dose of the UV-B radiation in Madurai, South India (10°N) is 10 kJ m-2. This is approximately 50% more than the average daily UV-B radiation in many European countries. A field study was conducted using selective filters to remove either the UV-B (< 320 nm) or UV-B/A (<400 nm) of the solar spectrum, and the effects were followed inCyamopsis tetragonoloba, Vigna mungo, andVigna radiata to determine their sensitivity to UV. When compared to ambient radiation, exclusion of solar UV-B increased the seedling height, leaf area, fresh weight and dry weight and the crop yield by 50% in the case ofCyamopsis, and the extent of such increase was slightly less under UV-B/A exclusion. InV. mungo a significant reduction was seen in solar UV excluded plants whileV. radiata was found to be unaffected.  相似文献   

4.
The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role.  相似文献   

5.
UV‐B dose responses of two lines of pea were quantified at 2.3, 4.6, 6.9 and 9.2 kJ m−2 day−1 UV‐B (weighted according to Caldwell's generalised plant action spectrum) in controlled environments providing near‐field doses of photosynthetic radiation. Increasing UV‐B significantly increased UV‐B absorbing compounds in both lines. In the UV‐B sensitive line, JI1389, increasing UV‐B significantly inhibited most aspects of plant morphology and biomass. In the more UV‐B‐tolerant line, Scout, increasing UV‐B significantly reduced foliage area but had no effect on above‐ground biomass, although root biomass was significantly increased. Reduced plant height in JI1389 was caused by shorter internodes, in turn due to reduced cell number but not cell length. UV‐B had no significant effects on photosynthesis in either line. Significant dose responses were linear for the growth of the main stem in JI1389 but remaining significant dose responses were better fitted by quadratics with maximum UV‐B effects occurring in the range 5–7 kJ m−2 day−1 PAS300, due to stimulation of branch growth at the highest dose. However, growth stimulation by UV‐B was confined to PAS300 doses which at temperate latitudes would result only from rather extreme ozone depletions. We conclude that investigations using relatively low UV‐B doses, rather than those well above the current maximum, may be the best approach to both understanding of the fundamental mechanisms of plant responses to UV‐B and quantifying the magnitude of responses to stratospheric ozone depletion.  相似文献   

6.
Direct evidence for the possible loss of photosystem II (PS II) activity in chloroplasts of Vigna sinensis L. cv. Walp after ultraviolet-B (UV-B, 280–320 nm) radiation treatment was provided by polyacrylamide gel electrophoretic analysis of PS II polypeptides. A 30 min UV-B treatment of chloroplasts caused a 50% loss of PS II activity. The artificial electron donor. Mn2+ failed to restore UV-B radiation induced loss of PS II activity, while diphenyl carbazide (DPC) and NH2OH only partially restored activity. Such a loss in PS II activity was found to be primarily due to a loss of 23 and 33 kDa extrinsic polypeptides. UV-B treatment induced the synthesis of a few polypeptides and a 29 kDa light-harvesting chlorophyll protein.  相似文献   

7.
Plants may activate similar defence systems to reduce cellular damages caused by different stress conditions. In the present experiments, the formation of lipid peroxidation products [thiobarbituric acid reactive species (TBARS)] was significant during both drought and ultraviolet (UV)‐B stresses, whereas the formation of reactive oxygen species (ROS) was a more delayed response to UV‐B than to drought. H2O2 was detected during both stresses, whereas ·OH radical production was a more characteristic response to drought. The present characterization of transgenic tobacco plants revealed a common role for aldose/aldehyde reductase (ALR) in the detoxification of lipid peroxidation products under water depletion and UV‐B irradiation. As the result of the increased synthesis of ALR enzyme, the transformed plants were more tolerant to both stress conditions, exhibiting reduced loss of photosynthetic function and decreased accumulation of TBARS and H2O2 as compared to control (SR1) plants. When plants had been exposed to mild, non‐lethal drought and were then watered again to recover, they were more tolerant to a subsequent stress by UV‐B. This was characteristic to both transgenic and wild‐type plants. However, this drought‐induced cross‐tolerance to UV‐B stress of SR1 tobacco did not reach the enhancement achieved by the overexpression of ALR.  相似文献   

8.
黄梅玲  江洪  金清  余树全 《生态学报》2010,30(8):1998-2009
平流层臭氧的减薄导致到达地表UV-B辐射增强是全球所面临的环境问题之一。UV-B辐射胁迫对植物的生物学效应研究成为继全球大气二氧化碳浓度升高对植物影响研究之后的又一热点领域。设置了UV-B滤光减弱组、UV-B辐射增强组和自然光对照组3组大田实验,选择不同起源时期的乐东拟单性木兰(Parakmeria lotungensi)、青冈(Cyclobalanopsis glauca)、山核桃(Carya cathayensis)幼苗为实验材料,测定每组中3种植物的生长量与光合特征参数,通过对比组间和种间差异,研究不同起源时期的3种木本植物对UV-B辐射胁迫的响应模式,分析3种植物对于UV-B辐射胁迫的适应性与自身起源和进化时间的关系,为"起源时间越早的木本植物生长发育和光合生理能否更好地适应UV-B辐射胁迫"这一科学命题的探讨提供一定实验参考。得到如下结果:(1)相对于自然光照条件,增强UV-B辐射胁迫对3种木本植物的地径和株高都有抑制作用;对乐东拟单性木兰、青冈的Pn和Amax有一定的抑制作用,对山核桃Pn和Amax则具有一定的促进作用。减弱UV-B辐射胁迫对3种木本植物的地径起到抑制作用,对乐东拟单性木兰、青冈幼苗的株高生长有促进作用,但对山核桃的株高却具有抑制作用;对乐东拟单性木兰以及山核桃的Pn和Amax有一定的抑制作用,而对青冈Pn和Amax则有促进作用。(2)对比种间差异,发现3种不同的UV-B光照条件下青冈的地径生长量都最大,乐东拟单性木兰次之,山核桃最小;株高生长量种间大小排序不一致;相对于自然光照条件,增强UV-B辐射强度下山核桃Pn、Amax的比值都最大,青冈次之,乐东拟单性木兰最小;减弱UV-B辐射强度下青冈的Pn、Amax的比值都最大,乐东拟单性木兰次之,山核桃最小;表明不同起源时间对植物抗UV-B辐射胁迫能力有一定的影响,但不是决定性因素。UV-B辐射增强和过滤减弱胁迫对3个树种幼苗的生长发育、光合作用、叶绿素均有影响,但不同起源时期3种木本植物幼苗光合特征参数的响应模式不一,其机制尚待进一步开展实验进行求证。本研究结果可丰富和补充UV-B辐射胁迫对木本植物的影响研究,为从进化角度筛选UV-B胁迫抗性较强的植物提供了一定的依据。  相似文献   

9.
Sugar beet ( Beta vulgaris L.) plants injected with Cercospora beticota Sace. as well as non-infected plants were grown under visible light with or without ultraviolet-B (UV-B, 280–320 nm) radiation for 40 days. An interaction between UV-B radiation and Cercospora leaf spot disease was observed, resulting in a large reduction in leaf chlorophyll content, dry weight of leaf laminae, petioles and storage roots. Lipid peraxidation in leaves also increased the most under the combined treatments. This was also true for ultraweak luminescence from both adaxial and abaxial leaf surfaces. However, no correlation between lipid peroxidation and ultraweak luminescence was observed. Ultraviolet-B radiation given alone appeared to have either a stimulating effect, giving an increase in dry weight of laminae and reducing lipid peroxidation, or no effect. This lack of effect was seen in the absence of change in dry weight of storage roots and chlorophyll content relative to controls. The :study demonstrated a harmful interaction between UV-B radiation and Cercospom leaf spot disease on sugar beet.  相似文献   

10.
Our knowledge of the effects of increased levels of ultraviolet-B radiation (UV-B) on plant fitness is limited mainly to yield studies in a few crop species. Previous greenhouse and garden studies of Brassica have found greater detrimental effects of UV-B on fitness in gardens than in the greenhouse, suggesting the possibility that additional stresses in the field decrease the ability of Brassica to cope with UV-B. Possible interactions between UV-B and water/nutrient stress in determining plant fitness have rarely, if ever, been studied experimentally. Here we report measurements of female fitness in two species of Brassica in an experiment in which both UV-B and levels of water and nutrients were varied in a 2 x 2 factorial design. Water and nutrient stress reduced female fitness in both species, while UV-B caused fitness reductions in only one of the species. There was evidence for interactions between UV-B and water/nutrient stress for only a few of the traits measured; most traits, including those closely related to fitness, showed no evidence of an interaction.  相似文献   

11.
Figueiredo  M.V.B.  Vilar  J.J.  Burity  H.A.  de frança  F.P. 《Plant and Soil》1999,207(1):67-75
Experiments were carried out to investigate the effects of different degrees of water stress on cowpea in the presence and absence of Bradyrhizobium spp. inoculation and to evaluate physiological responses to stress. The soil used was Yellow Latosol, pH 6.3 and the crop used was cowpea (Vigna unguiculata (L.) Walp.) cv. ‘IPA 204’. Stress was applied continuously by the control of matric potential (ψ m ) through a porous cup. The lowered soil ψ m had a direct effect on the N2 fixation, but the strains Bradyrhizobium introduced by inoculation in the cowpea plants were superior to the indigenous strain demonstrating the importance of inoculation in the stressed plants. At the more negative ψ m plants inoculated with the strains EI 6 formed associations of greater symbiotic efficiency which helped the cowpea plants to withstand drought stress better than the strain BR 2001 and the uninoculated control. The leghaemoglobin concentration was not inhibited in the drought-stressed plants at ψ m -70 kPa when inoculated with the strain EI 6, which confered a differential degree of drought resistance in plants. The ψ w declined in the stressed plants reaching values of -1.0 MPa which was sufficient to cause disturbance in nodulation and biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Rozema  J.  Lenssen  G. M.  van de Staaij  J. W. M.  Tosserams  M.  Visser  A. J.  Broekman  R. A. 《Plant Ecology》1997,128(1-2):183-191
UV-B radiation is just one of the environmental factors, that affect plant growth. It is now widely accepted that realistic assessment of plant responses to enhanced UV-B should be performed at sufficiently high Photosynthetically Active Radiation (PAR), preferably under field conditions. This will often imply, that responses of plants to enhanced UV-B in the field will be assessed under simultaneous water shortage, nutrient deficiency and variation of temperature. Since atmospheric CO2 enrichment, global warming and increasing UV-B radiation represent components of global climatic change, interactions of UV-B with CO2 enrichment and temperature are particularly relevant. Only few relevant UV-B× CO2 interaction studies have been published. Most of these studies refer to greenhouse experiments. We report a significant CO2 × UV-B interaction for the total plant dry weight and root dry weight of the C3-grass Elymus athericus. At elevated CO2 (720 mol mol-1, plant growth was much less reduced by enhanced UV-B than at ambient atmospheric CO2 although there were significant (positive) CO2 effects and (negative) UV-B effects on plant growth. Most other CO2 × UV-B studies do not report significant interactions on total plant biomass. This lack of CO2 × UV-B interactions may result from the fact that primary metabolic targets for CO2 and UVB are different. UV-B and CO2 may differentially affect plant morphogenetic parameters: biomass allocation, branching, flowering, leaf thickness, emergence and senescence. Such more subtle interactions between CO2 and UV-B need careful and long term experimentation to be detected. In the case of no significant CO2× UV-B interactions, combined CO2 and UV-B effects will be additive. Plants differ in their response to CO2 and UV-B, they respond in general positively to elevated CO2 and negatively to enhanced UV-B. Moreover, plant species differ in their responsiveness to CO2 and UV-B. Therefore, even in case of additive CO2 and UV-B effects, plant competitive relationships may change markedly under current climatic change with simultaneous enhanced atmospheric CO2 and solar UV-B radiation.  相似文献   

13.
14.
BACKGROUND AND AIMS: The presence of connate foliaceous stipules of primary leaves and their inheritance in cowpea (Vigna unguiculata) genotype EC394736 is reported for the first time. METHODS: The development of foliaceous stipules (FS) and their persistence were examined throughout the growth and developmental stages of the plants of the genotype EC394736. The shape, size, colour, texture and other parameters were examined in the field during the period 15-50 d after sowing. The area of FS was measured using image analysis software. The inheritance of FS was studied by making a cross between the genotype EC394763 with rudimentary stipules (RS) and the genotype EC394736, which has connate foliaceous stipules of primary leaves. The presence or absence of FS in plants of the F1, F2 and F3 generations was recorded. KEY RESULTS: The stipules developed along with the primary leaves in the genotype EC394736. One stipule of each primary leaf fused with the adjacent stipule of the other primary leaf forming a foliaceous structure. These stipules persisted on the plants for >50 d, even after the primary leaves had withered off. The F1 plants showed an absence of FS indicating the rudimentary stipules to be dominant over foliaceous stipules. The F2 segregation into 15 (RS) : 1 (FS) indicated that duplicate recessive genes controlled the presence of the FS. This was confirmed from the segregation pattern in the F3 generation. CONCLUSIONS: The presence of FS is a unique feature in cowpea genotype EC394736 and duplicate recessive genes govern it. The FS can be used as a morphological marker for identification of cowpea varieties.  相似文献   

15.
D. Steinmüller  M. Tevini 《Planta》1985,164(4):557-564
The surface structure and composition of surface lipids were examined in leaves of barley, bean, and cucumber seedlings grown in a growth chamber under white light and low levels of ultraviolet (UV-B; 280–320 nm) radiation. The cuticular wax of cucumber cotyledons and bean leaves appeared as a thin homogeneous layer, whereas on barley leaves crystal-like structures could be observed under these irradiation conditions. Principally, the amount of cuticular wax found in barley leaves was five times greater than in bean or cucumber leaves. The prediominant wax components were primary alcohols in barley, primary alcohols and monoesters in bean, and alkanes in cucumber cotyledons. Irradiation with enhanced UV-B levels caused an increase of total wax by about 25% in all plant species investigated. Aldehydes, detected as a minor constituent of cucumber and barley wax, increased twofold. Distribution patterns of the homologs within some wax classes were different at low and enhanced UV-B levels. In general, the distribution of the homologs was shifted to shorter acyl chain lengths in wax of leaves exposed to enhanced UV-B levels. This was most apparent in cucumber wax, less in bean or barley wax. The UV-B-caused effects upon cucumber wax were mainly due to a response by the adaxial surface of the leaf.Abbreviation UV-B Ultraviolet radiation (280–320 nm)  相似文献   

16.
水分胁迫对长期UV—B辐射下柚树苗生理特性的影响   总被引:23,自引:0,他引:23  
水分胁迫下,柚[Citrus maxima(Burm.)Merr.]树苗叶片相对含水量(RWC)、水势(ΨW)、净光合速率(Pn)、可溶性蛋白质和叶绿素(Chl)含量下降,丙二醛(MDA)、脯氨酸(Pro)含量和超氧化物歧化酶(SOD)活性升高,过氧化氢酶(CAT)活性先上升后下降,抗坏血酸过氧化物酶(APX)活性、抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量明显降低。叶绿素荧光参数中光系统Ⅱ光化学原初效率(Fv/Fm)、光系统Ⅱ电子传递量子效率(ΦPSⅡ)和光化学猝灭(qp)下降,非光化学猝灭(qN)和热能耗散系数(KD)升高。显示膜系统和PSⅡ是水分胁迫的主要抑制位点。抗旱性强的品种具有较高的活性氧清除能力。长期紫外线-B(UV-B)增强辐射能缓解水分胁迫下柚树苗叶片RWC、ΨW、APX活性和GSH、AsA含量下降,但对水分胁迫下的Pro含量、Pn和叶绿素荧光特性作用不明显。初步推测:UV-B和水分胁迫对植物有部分相同的作用机制,都导致植株膜脂过氧化程度加剧和PSⅡ的失活,同时存在各自作用方式的特异性。  相似文献   

17.
The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-BBE) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O2) generation rate, hydrogen peroxide (H2O2) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m?2 day?1 UV-BBE. Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m?2 day?1 UV-BBE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O2? generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-BBE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-BBE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice.  相似文献   

18.
The possible ameliorative effects of quercetin on soybean [Glycine max (L.) Merr.] leaves exposed to UV-B radiation were conducted in greenhouse. The symmetrical leaves supplied with quercetin solution (0.2%, 1%) were exposed to UV-B radiation (0, 3.5, 6.5 kJ m−2 d−1). 0.2% quercetin ameliorated leaf photosynthesis, improved leaf water content (LWC), and decreased lipid oxidation. The unfavorable effect on photosynthetic parameter was displayed in 1% quercetin treatment. The effect of quercetin on phenylalanine ammonia lyase (PAL) activity varied with the quercetin concentration, UV-B radiation intensity and leaf development. In the later development polyphenol oxidase (PPO) activity was increased significantly by quercetin treatments. We suggested that quercetin with suitable concentration could serve as UV-B protective agent partly due to its antioxidant capacity.  相似文献   

19.
Abstract. Water stress created by withholding irrigation in mung bean resulted in decreased leaf water potential and nodule moisture content. Decreased leaf water potential was associated with decreased activity of nitrogenase, glutamine synthetase (GS), asparagine synthetase (AS), aspartate amino transferase (AAT), xanthine dehydrogenase (XDH) and uricase. However, the activity of glutamate dehydrogenase increased three-fold under severe stress. The activity of allantoinase and allantoicase was not affected by moderate stress but decreased under severe stress. The in vitro production of allantoic acid from allantoin and uric acid in the cytosol fraction decreased more than its production from xanthine and hypoxanthine. The production of NADH also decreased under stress.
During recovery from severe stress, the activity of XDH and uricase further decreased, whilst that of allantoinase and allantoicase increased compared to the control. This corresponded with the higher content of ureides during recovery. The recovery in other enzymes was not complete although leaf water potential and nodule moisture content recovered fully within 24 h.  相似文献   

20.
Pea plants (Pisum sativum L. cv. Greenfeast) were grown and exposed to supplementary UV-B radiation from day 17 after planting under growth cabinet conditions. The effects of this exposure on the ultrastructure of chloroplasts and the total soluble sugar and starch concentrations were estimated. Supplementary UV-B radiation was shown to damage the structure of chloroplasts, as manifested by dilation of thylakoid membranes, a progressive disruption of the thylakoid structure and disintegration of the double membrane envelope surrounding the chloroplast, accompanied by the accumulation of large starch grains. Diurnal changes observed in starch concentration suggest that the higher concentration of starch in supplementary UV-B-treated leaves is due to its immobilization, rather than to any increase in starch synthesis: soluble sugars accumulated and remained at a higher level and then later declined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号