首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The beta-barrel membrane protein is found in the outer membranes of bacteria, mitochondria and chloroplasts. Approximately 2-3% of the genes in Gram-negative bacterial genomes encode beta-barrels. Whereas there are fewer than 20 known three-dimensional beta-barrel structures, genomic databases currently contain thousands of beta-barrels belonging to dozens of families. New research is revealing the variety of beta-barrel structures and the variety of functions performed by these versatile proteins.  相似文献   

2.
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.  相似文献   

3.
In the postgenomic era, the transformation of genetic information into biochemical meaning is required. We have analyzed the proteome of the chloroplast outer envelope membrane by an in silico and a proteomic approach. Based on its evolutionary relation to the outer membrane of Gram-negative bacteria, the outer envelope membrane should contain a large number of beta-barrel proteins. We therefore calculated the probability for the existence of beta-sheet, beta-barrel, and hairpin structures among all proteins of the Arabidopsis thaliana genome. According to the existence of these structures, a number of candidates were selected. This protein pool was analyzed by TargetP to discard sequences with signals that would direct the protein to other organelles different from chloroplasts. In addition, the pool was manually controlled for the presence of proteins known to function outside of the chloroplast envelope. The approach developed here can be used to predict the topology of beta-barrel proteins. For the proteomic approach, proteins of highly purified outer envelope membranes of chloroplasts from Pisum sativum were analyzed by ESI-MS/MS mass spectrometry. In addition to the known components, four new proteins of the outer envelope membranes were identified in this study.  相似文献   

4.
beta-Barrel membrane proteins have several important functions in outer membranes of Gram-negative bacteria and in the organelles of endosymbiotic origin, mitochondria and chloroplasts. The biogenesis of beta-barrel membrane proteins was, until recently, an unresolved process. A breakthrough was achieved when a specific pathway for the insertion of beta-barrel outer-membrane proteins was identified in both mitochondria and Gram-negative bacteria. The key component of this pathway is Tob55 (also known as Sam50) in mitochondria and Omp85 in bacteria, both beta-barrel membrane proteins themselves. Tob55 is part of the hetero-oligomeric TOB (topogenesis of mitochondrial outer-membrane beta-barrel proteins) or SAM (sorting and assembly of mitochondria) complex, which is present in the mitochondrial outer membrane. Tob55 belongs to an evolutionarily conserved protein family, the members of which are present in almost all eukaryotes and in Gram-negative bacteria and chloroplasts. Thus, is it emphasized that the insertion pathway of mitochondrial beta-barrel membrane proteins was conserved during evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

5.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

6.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway.  相似文献   

7.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Despite their importance, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane proteins. We introduce the program partiFold to investigate the folding landscape of TMBs. By computing the Boltzmann partition function, partiFold estimates inter-beta-strand residue interaction probabilities, predicts contacts and per-residue X-ray crystal structure B-values, and samples conformations from the Boltzmann low energy ensemble. This broad range of predictive capabilities is achieved using a single, parameterizable grammatical model to describe potential beta-barrel supersecondary structures, combined with a novel energy function of stacked amino acid pair statistical potentials. PartiFold outperforms existing programs for inter-beta-strand residue contact prediction on TMB proteins, offering both higher average predictive accuracy as well as more consistent results. Moreover, the integration of these contact probabilities inside a stochastic contact map can be used to infer a more meaningful picture of the TMB folding landscape, which cannot be achieved with other methods. Partifold's predictions of B-values are competitive with recent methods specifically designed for this problem. Finally, we show that sampling TMBs from the Boltzmann ensemble matches the X-ray crystal structure better than single structure prediction methods. A webserver running partiFold is available at http://partiFold.csail.mit.edu/.  相似文献   

8.
The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.  相似文献   

9.
10.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins (omps) makes them an important protein class. At the present time, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane proteins. A novel method using pairwise interstrand residue statistical potentials derived from globular (nonouter membrane) proteins is introduced to predict the supersecondary structure of transmembrane beta-barrel proteins. The algorithm transFold employs a generalized hidden Markov model (i.e., multitape S-attribute grammar) to describe potential beta-barrel supersecondary structures and then computes by dynamic programming the minimum free energy beta-barrel structure. Hence, the approach can be viewed as a "wrapping" component that may capture folding processes with an initiation stage followed by progressive interaction of the sequence with the already-formed motifs. This approach differs significantly from others, which use traditional machine learning to solve this problem, because it does not require a training phase on known TMB structures and is the first to explicitly capture and predict long-range interactions. TransFold outperforms previous programs for predicting TMBs on smaller (相似文献   

11.
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Although sequence motifs have been studied in alpha-helical membrane proteins and have been shown to play important roles in their assembly, it is not clear whether over-represented motifs and under-represented anti-motifs exist in beta-barrel membrane proteins. We have developed probabilistic models to identify sequence motifs of residue pairs on the same strand separated by an arbitrary number of residues. A rigorous statistical model is essential for this study because of the difficulty associated with the short length of the strands and the small amount of structural data. By comparing to the null model of exhaustive permutation of residues within the same beta-strand, propensity values of sequence patterns of two residues and p-values measuring statistical significance are calculated exactly by several analytical formulae we have developed or by enumeration. We find that there are characteristic sequence motifs and antimotifs in transmembrane (TM) beta-strands. The amino acid Tyr plays an important role in several such motifs. We find a general dichotomy consisting of favorable Aliphatic-Tyr sequence motifs and unfavorable Tyr-Aliphatic antimotifs. Tyr is also part of a terminal motif, YxF, which is likely to be important for chaperone binding. Our results also suggest several experiments that can help to elucidate the mechanisms of in vitro and in vivo folding of beta-barrel membrane proteins.  相似文献   

12.
The beta-barrel proteins of mitochondria are synthesized on cytosolic ribosomes. The proteins are imported by the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been assumed that the SAM(core) complex with the subunits Sam35, Sam37 and Sam50 represents the last import stage common to all beta-barrel proteins, followed by splitting in a Tom40-specific route and a route for other beta-barrel proteins. We have identified new components of the beta-barrel assembly machinery and show that the major beta-barrel pathway extends beyond SAM(core). Mdm12/Mmm1 function after SAM(core) yet before splitting of the major pathway. Mdm12/Mmm1 have been known for their role in maintenance of mitochondrial morphology but we reveal assembly of beta-barrel proteins as their primary function. Moreover, Mdm10, which functions in the Tom40-specific route, can associate with SAM(core) as well as Mdm12/Mmm1 to form distinct assembly complexes, indicating a dynamic exchange between the machineries governing mitochondrial beta-barrel assembly. We conclude that assembly of mitochondrial beta-barrel proteins represents a major function of the morphology proteins Mdm12/Mmm1.  相似文献   

13.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

14.
The amino acid composition and architecture of all beta-barrel membrane proteins of known three-dimensional structure have been examined to generate information that will be useful in identifying beta-barrels in genome databases. The database consists of 15 nonredundant structures, including several novel, recent structures. Known structures include monomeric, dimeric, and trimeric beta-barrels with between 8 and 22 membrane-spanning beta-strands each. For this analysis the membrane-interacting surfaces of the beta-barrels were identified with an experimentally derived, whole-residue hydrophobicity scale, and then the barrels were aligned normal to the bilayer and the position of the bilayer midplane was determined for each protein from the hydrophobicity profile. The abundance of each amino acid, relative to the genomic abundance, was calculated for the barrel exterior and interior. The architecture and diversity of known beta-barrels was also examined. For example, the distribution of rise-per-residue values perpendicular to the bilayer plane was found to be 2.7 +/- 0.25 A per residue, or about 10 +/- 1 residues across the membrane. Also, as noted by other authors, nearly every known membrane-spanning beta-barrel strand was found to have a short loop of seven residues or less connecting it to at least one adjacent strand. Using this information we have begun to generate rapid screening algorithms for the identification of beta-barrel membrane proteins in genomic databases. Application of one algorithm to the genomes of Escherichia coli and Pseudomonas aeruginosa confirms its ability to identify beta-barrels, and reveals dozens of unidentified open reading frames that potentially code for beta-barrel outer membrane proteins.  相似文献   

15.
Proteins belonging to the Omp85 family are involved in the assembly of beta-barrel outer membrane proteins or in the translocation of proteins across the outer membrane in bacteria, mitochondria, and chloroplasts. The cell envelope of the thermophilic bacterium Thermus thermophilus HB27 is multilayered, including an outer membrane that is not well characterized. Neither the precise lipid composition nor much about integral membrane proteins is known. The genome of HB27 encodes one Omp85-like protein, Omp85(Tt), representing an ancestral type of this family. We overexpressed Omp85(Tt) in T. thermophilus and purified it from the native outer membranes. In the presence of detergent, purified Omp85(Tt) existed mainly as a monomer, composed of two stable protease-resistant modules. Circular dichroism spectroscopy indicated predominantly beta-sheet secondary structure. Electron microscopy of negatively stained lipid-embedded Omp85(Tt) revealed ring-like structures with a central cavity of approximately 1.5 nm in diameter. Single-channel conductance recordings indicated that Omp85(Tt) forms ion channels with two different conducting states, characterized by conductances of approximately 0.4 nS and approximately 0.65 nS, respectively.  相似文献   

16.
Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.  相似文献   

17.
In contrast to typical membrane proteins that span the lipid bilayer via transmembrane alpha-helices, bacterial outer membrane proteins adopt a beta-barrel architecture composed of antiparallel transmembrane beta-strands. The topology of outer membrane proteins is difficult to predict accurately using computer algorithms, and topology mapping protocols commonly used for alpha-helical membrane proteins do not work for beta-barrel proteins. We present here the topology of the PapC usher, an outer membrane protein required for assembly and secretion of P pili by the chaperone/usher pathway in uropathogenic Escherichia coli. An initial attempt to map PapC topology by insertion of protease cleavage sites was largely unsuccessful due to lack of cleavage at most sites and the requirement to disrupt the outer membrane to identify periplasmic sites. We therefore adapted a site-directed fluorescence labeling technique to permit topology mapping of outer membrane proteins using small molecule probes in intact bacteria. Using this method, we demonstrated that PapC has the potential to encode up to 32 transmembrane beta-strands. Based on experimental evidence, we propose that the usher consists of an N-terminal beta-barrel domain comprised of 26 beta-strands and that a distinct C-terminal domain is not inserted into the membrane but is located instead within the lumen of the N-terminal beta-barrel similar to the plug domains encoded by the outer membrane iron-siderophore uptake proteins.  相似文献   

18.
Escherichia coli OmpW belongs to a family of small outer membrane proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. To gain insight into the function of these proteins A we have determined the crystal structure of E. coli OmpW to 2.7-A resolution. The structure shows that OmpW forms an 8-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound n-dodecyl-N,N-dimethylamine-N-oxide detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of n-dodecyl-N,N-dimethylamine-N-oxide. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial outer membrane.  相似文献   

19.
Insertion of beta-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38-Tob55 core complex binds precursors of beta-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of beta-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of beta-barrel proteins of mitochondria.  相似文献   

20.
beta-Barrel proteins constitute a distinct class of mitochondrial outer membrane proteins. For import into mitochondria, their precursor forms engage the TOM complex. They are then relayed to the TOB complex, which mediates their insertion into the outer membrane. We studied the structure-function relationships of the core component of the TOB complex, Tob55. Tob55 precursors with deletions in the N-terminal domain were not affected in their targeting to and insertion into the mitochondrial outer membrane. Replacement of wild-type Tob55 by these deletion variants resulted in reduced growth of cells, and mitochondria isolated from such cells were impaired in their capacity to import beta-barrel precursors. The purified N-terminal domain was able to bind beta-barrel precursors in a specific manner. Collectively, these results demonstrate that the N-terminal domain of Tob55 recognizes precursors of beta-barrel proteins. This recognition may contribute to the coupling of the translocation of beta-barrel precursors across the TOM complex to their interaction with the TOB complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号