首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between acridine orange (AO) and diluted and concentrated solutions of DNA, DNP systems and chromatin suspension at the physiologic ionic strength was investigated. The effect of AO on DNP systems was also investigated. It was shown that highest possible number of AO molecules bound to DNA made up 70% of the total number of nucleotides. The model of AO binding to DNA is proposed and used for calculation of constants of stronger and weaker AO-binding capacities equal to 6-10(6) M-1 and 1,7-10(5) M-1, respectively. The AO-DNA binding constants in DNP-complex are five as low. The primary number of binding sites in chromatin suspension made up 10% of the corresponding sites in DNA and increased as AO was adsorbed. AO induced the supercontraction of oriented DNP systems at the physiologic ionic strength and the appearance of the low-temperature melting hump.  相似文献   

2.
3.
A new procedure is described for the preparation of interphase chromatin from cultured mouse cells (line P815). The primary objective of this procedure was to eliminate exchanges of histones between deoxynucleoprotein molecules; this objective is shown experimentally to have been attained. The chromatin is released from cells by the non-ionic detergent Nonidet P40 in medium of low ionic strength (0.1 mM-KNa2PO4), and may then be sedimented as a structure which conserves the general form and ultrastructural characteristics of chromatin within the cell. The nuclear envelope cannot be detected in these structures by electron microscopy, and their content of choline-containing phospholipids is less than 10% of that of nuclei. The maintenance of form in this structure must thus depend on properties of the chromatin itself, and possibly on the more compact peripheral chromatin.Soluble DNP2 prepared by shearing these structures has the same relative contents of DNA, histones, non-histone proteins and RNA as DNP prepared by standard methods. Analyses by electrophoresis on polyacrylamide gels of the non-histone proteins reveals certain differences from the pattern of these proteins in DNP prepared by a salt precipitation method. The template activity for RNA synthesis, in the presence of Escherichia coli RNA polymerase of sheared, soluble DNP prepared by this procedure, is comparable to that of DNP prepared by other methods. However, in the absence of exogenous RNA polymerase the rate of RNA synthesis by structured (unsheared) chromatin is about ten times higher than the rate using sheared DNP.The rapid removal of the nuclear envelope in this lysis procedure allowed experimental examination of the origin of the histones and non-histone proteins of DNP. When DNP was prepared from a mixture of two populations of cells, one containing DNA distinguishable by a density label and the other containing radioactively labelled proteins, radioactive proteins were found exclusively in DNP of normal density, and not in dense DNP and vice versa. It is concluded that the proteins of DNP prepared in this way are not acquired during the preparation procedure but were already associated with DNA in vivo, and that other proteins are not bound non-specifically to DNA during the preparation of DNP. When a mixture of DNP molecules prepared, in this way is precipitated in 150 mm-NaCl and redissolved, some radioactively labelled histones migrate onto dense DNA molecules.This procedure is suitable for routine, quantitative isolation of chromosomal DNP from small numbers of cells; it is also applicable to cells of other cultured lines.  相似文献   

4.
5.
The structural organization of DNP fibrils and interchromatin granules of isolated rat hepatocyte nuclei has been studied in various conditions of chromatin solubilization. When observed either in nuclei fixed in situ or in a solution containing 20 mM TEA and 1 mM MgCl2, a DNP fibril consists of globular structures 20--25 nm in diameter. In the nuclei fixed in a magnesium-free solution (20 mM TA), nucleosome structures are revealed in DNP. Condensation of chromatin results from interaction between 20 nm globular fibrils, whereas the complete dispersion of chromatin is a consequence of its conversion into the nucleosomal form. In the conditions of both DNP structuralization and dispersion, the nuclei are revealed to contain zones of interchromatin granules connected by thin fibrils. It is assumed that the different compactness of these granular-fibrillar complexes and of the regions of condensed chromatin may be used for their separation and fractionation.  相似文献   

6.
7.
The fine organization of the centromere structural heterochromatin (CSH) in a cell culture of calf trachea (TR) was studied by the methods of light and electron microscopy after fixation in native conditions and after treatments with water Henk's solutions and solutions of Ca2+ of different concentrations. In interphase nuclei the CSH forms compact blocks--the chromocentres, which are connected with the nuclear envelope or the nucleolus. The diameter of the main class of DNP fibers in the CSH, chromosomal arms and chromocentres after fixation of control cells and after treatment with 50% Henk's solution is 20-25 nm. 10-15 nm DNP fibers are largely found in the contacts with kinetochores. After 20% Henk's solution treatment 10-15 nm fibers predominate in the CSH and chromosomal arms. A chromonema--a 100 nm chromatin fiber--is detected in the CSH after treatments with different concentrations of Ca2+ solutions, as well after fixation in native conditions. The peculiarity of structural organization and properties of the calf CSH at interphase and mitosis as compared with analogous regions in mouse chromosomes are suggested to be connected with the composition of its DNA and proteins.  相似文献   

8.
Electrophoretic mobility, amino acid composition and salt dissociation of histones isolated from sperm of sea urchin Strongylocentrotus intermedius and calf thymus cells were studied. The special arginine-rich histone fraction (I) has been observed in sea urchin sperm chromatin, this fraction being absent in calf thymus chromatin. Dissociation of lysine-containing histone fractions from sea urchin chromatin occured in the range of 0.7 to 1.0 M NaCl concentrations. H1 of calf thymus chromatin was totally extracted with 0.6 M NaCl. In the course of a further increase of salt concentrations (up to 1.5 M NaCl) a practically total extraction of histones from sperm chromatin was observed, while about 20% of proteins remained bound to DNA in thymus chromatin after extraction with 2.0 M NaCl. The template activity of non-extracted DNP preparations from urchin sperm was equal to 2-3% of that of totally deproteinized DNA. The template activity of DNP gradually increased at protein extraction from DNP preparations. The hybridization capacity of RNA transcribed on partially dehistonized DNP templates in vitro also increased.  相似文献   

9.
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome.This article was specially invited by the editors and represents work by leading researchers.  相似文献   

10.
We have investigated the presence of higher-order chromatin structures in different maize tissues. Taking advantage of the pulsed-field gel electrophoresis technique to analyse large DNA fragments from intact nuclei and cells, we have determined the size distribution of the high-molecular-weight DNA fragments obtained from chromatin degradation by endogenous nucleases in isolated nuclei. Chromatin digestion leads to the appearance of stable DNA fragments of about 50 kb in all the tissues examined, suggesting the folding of DNA in higher-order chromatin domain structures. It has been reported that such chromatin domains are formed by loops of the 30 nm fibres anchored to the nuclear matrix by a complex set of proteins, including DNA topoisomerase II. Treatment of maize protoplasts with the calcium ionophore A23187 and the antitumour drug VM-26, which specifically inhibit the religation of the cleaved DNA in the topoisomerase II reaction, also produces the 50 kb structure. Analysis of the DNA contained in the 50 kb chromatin structure shows a higher degree of methylation than in bulk maize chromosomal DNA. The role of methylated DNA in the chromatin folding is discussed.  相似文献   

11.
12.
Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol's action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to the nucleosome. Our findings support that cholesterol assists 10 and 30 nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.  相似文献   

13.
Calf thymus soluble deoxyribonucleoproteins (DNP) obtained by sonication of chromatins isolated both in a “physiological” salt medium and in a buffered water were resolved into four fractions on electrophoresis. The DNA extracted from DNP obtained in a salt medium occurs in fragments of discrete sizes while the sonicated chromatin gel obtained in a buffered water gives rise to a heterogeneous population of DNA fragments upon deproteinization. It is suggested that regularly spaced “weak” points exist in native chromatin and that the regularity is destroyed during isolation procedures involving the transfer of the nuclei into water.  相似文献   

14.
Periodicity of DNA folding in higher order chromatin structures.   总被引:14,自引:2,他引:12       下载免费PDF全文
Each level of DNA folding in cells corresponds to a distinct chromatin structure. The basic chromatin units, nucleosomes, are arranged into solenoids which form chromatin loops. To characterize better the loop organization of chromatin we have assumed that the accessibility of DNA inside these structures is lower than on the outside and examined the size distribution of high mol. wt DNA fragments obtained from cells and isolated nuclei after digestion with endogenous nuclease or topoisomerase II. The largest discrete fragments obtained contain 300 kbp of DNA. Their further degradation proceeds through another discrete size step of 50 kbp. This suggests that chromatin loops contain approximately 50 kbp of DNA and that they are grouped into hexameric rosettes at the next higher level of chromatin structure. Based upon these observations a model by which the 30 nm chromatin fibre can be folded up into compact metaphase chromosomes is also described.  相似文献   

15.
16.
Conformational changes in chromatin structure are nowadays the object of intensive research due to its importance for proper regulation of intranuclear processes. The fine structure of chromatin within the DNA replication sites was studied in in situ fixed cells and cells permebilized by low ionic strength solutions in the presence of divalent cations. The latter method provides visualization of higher level chromatin structures such as globular chromomeres and chromonema fibres. Nascent DNA was detected immunochemically using anti-BrdU antibodies on the surface of ultrathin sections prepared from Epon-embedded material. It was shown that newly replicated DNA preferentially localized within the zones filled with globular and fibrillar elements with characteristic diameter of 30 nm, and not in chromonema fibres, while after replication had been completed DNA became embedded into as thick as 60-80 nm chromonema elements. The results obtained are discussed in the context of conception of hierarchical folding of chromatin fibers.  相似文献   

17.
18.
Cation-induced folding of 10 nm chromatin filament to 30 nm fiber was studied with hyperacetylated chromatin using light scattering at 90 degrees and flow linear dichroism. Acetylated chromatin folded in a way indistinguishable from that of the control chromatin: both the compactness of chromatin and the orientation of nucleosomes relative to the fiber axis were identical at a given salt concentration.  相似文献   

19.
20.
DNase I, trypsin, and micrococcal nuclease are used to further probe the structure of nascent deoxyribonucleoprotein (DNP) fractions which appear after in vivo 20-s pulse labeling of sea urchin embryos with [3H]thymidine. We present evidence that the large nascent DNP which protects the approximately 300-base pair large nascent DNA consists of at least one nucleosome core. This is based on fractionation in denaturing polyacrylamide gels of DNA extracted from large nascent DNP fractions of a micrococcal nuclease + DNase I digest of nuclei. The data also suggest the existence of a DNase I-hypersensitive site(s) within the large nascent DNP; this is consistent with the hypothesis that the latter consists of closely packed dinucleosome cores. Histone H1 and non-histone proteins do not account for the previously reported unusual hyperresistance of the large nascent DNA against micrococcal nuclease. The protection offered this approximately 300-base pair nascent DNA was not eliminated by an 0.2-microgram/ml trypsin pretreatment which removes the above proteins from the chromatin. However, 5-10 micrograms/ml of trypsin, which remove a portion of the NH2 termini of the four core histones of nucleosomes, eliminate the hyperresistance of the large nascent DNA to subsequent micrococcal nuclease digestion, while nascent and bulk monomer DNAs remain unaffected. This indicates histone-histone and/or histone-DNA interactions within the large nascent DNP which differ from those of nascent and bulk mononucleosome cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号