首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Murine intestinal epithelial cells were studied by flow cytometric analyses for the expression of lymphocyte-associated membrane antigens. Three lymphocyte antigens were found to be expressed at high density on most nonhematopoietic intestinal epithelial cells. These included major histocompatibility complex class II antigens, the T cell-associated CT carbohydrate determinant, and the asialo GM1 (aGM1) neutral glycolipid. Examination of aGM1 determinant density on epithelial cells, estimated by fluorescence intensity, indicated that aGM1 was expressed at levels equal to those present on lymphoid cells known to be aGM1+. The potential role for lymphocyte antigenic determinants on nonhematopoietic cells of murine epithelia with respect to local regulation of intestinal lymphocytes is discussed.  相似文献   

2.
Two major pathways, the T cell receptor and the T11 alternate pathway, allow for T cell activation. In the human thymus, the T cell antigen receptor complex is reduced or absent on immature thymocytes, whereas the T11 glycoprotein is present at high cell surface density on all thymocytes. To determine whether activation through the T11 pathway induces similar or different changes in mature and immature thymocytes, we fractionated thymocytes according to their surface expression of the T3-T cell receptor (T3/Ti) complex. We report that two populations, one with high and one with low T3/Ti expression, can be activated through the T11 pathway to undergo nuclear activation and express IL 2 receptors. Moreover, in the absence of accessory cells, only the most mature population, expressing high T3 density, could be induced to proliferate, whereas the subset representing immature cortical thymocytes required accessory cells for proliferation. These findings suggest that the cellular microenvironment may have a critical role in regulating the activation of immature cortical thymocytes and that this cell population may not represent "nonfunctional" dead end cells, but rather a valid intermediate in human thymic differentiation.  相似文献   

3.
Stem cell Ag 1 and 2 (Sca-1 and Sca-2), so named due to their expression by mouse bone marrow stem cells, were evaluated for expression by populations of cells within the thymus. Immunohistochemical analysis demonstrated that Sca-1 was expressed by cells in the thymic medulla and by some subcapsular blast cells, as well as by the thymic blood vessels and capsule. Sca-2 expression, which was limited to the thymic cortex, could be associated with large cycling thymic blast cells. Both Sca-1 and Sca-2 were expressed on a sub-population of CD4-CD8- thymocytes, and this subpopulation was entirely contained within the Ly-1lo progenitor fraction of cells. Sca-1 expression by a phenotypically mature subset of CD4+CD8- thymocytes was also noted. Conversely, Sca-2 expression was observed on a phenotypically immature or nonmature subpopulation of CD4-CD8- thymocytes. MEL-14, an antibody that defines functional expression of a lymphocyte homing molecule, identified a small population of thymocytes that contained all four major thymic subsets. Sca-2 split the MEL-14hi thymocyte subset into two Sca-2+ non-mature/immature phenotype fractions and two Sca-2- mature phenotype fractions. In peripheral lymphoid organs, Sca-1 identified a sub-population of mature T lymphocytes that is predominantly CD4+CD8-, in agreement with the thymic distribution of Sca-1. Peripheral T cells of the CD4-CD8+ phenotype were predominantly Sca-1-. In contrast, Sca-2 did not appear to stain peripheral T lymphocytes, but recognized only a subset of B lymphocytes which could be localized by immunohistochemistry to germinal centers. Thus, expression of Sca-1 is observed throughout T cell ontogeny, whereas Sca-2 is expressed by some subsets of thymocytes, including at least one half of thymic blasts, but not by mature peripheral T lymphocytes.  相似文献   

4.
The monoclonal antibody MEL-14 recognizes a lymphocyte surface structure (the MEL-14 antigen) involved in migration of lymphocytes into lymph nodes. Its use as a maturation marker for T cells within the thymus led to the view that a small population (1 to 2%) of MEL-14high thymocytes located in the inner cortex represented fully mature cells about to exit as thymus emigrants. The medulla, in this view, contained only the phenotypically mature but MEL-14low cells, and was not the source of thymus emigrants. The data we present, derived from flow-cytometric analysis of suspension-stained CBA mouse thymocytes, is not in accordance with this view. A high proportion (approximately 20%) of thymocytes express relatively high levels of MEL-14; these include some immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes. Among the 12 to 14% thymocytes of mature phenotype (PNAlow or H-2Khigh or Ly-2+ L3T4- and Ly-2- L3T4+), more than half express relatively high levels of MEL-14. The mature phenotype and MEL-14moderate-to-high cells (8% of thymocytes) appear too numerous to account for the few percent MEL-14high cells seen in the cortex in frozen sections, and the mature phenotype but MEL-14low cells (2 to 3% of thymocytes) too few to fill the medulla; however, both together account numerically for the medullary population. By section staining, the medulla contains Ly-2- L3T4+ and Ly-2+ L3T4- cells in a characteristic 2:1 ratio; by suspension staining this ratio agrees with that of the total mature phenotype population, but not with that of the MEL-14low subset previously claimed to represent medullary cells. Another paradox is apparent when suspension staining and section staining are compared: suspension staining reveals that many mature phenotype cells coexpress high levels of both MEL-14 and H-2K, yet section staining reveals H-2Khigh cells in the medulla but not in the inner cortex, and reveals scattered MEL-14high cells throughout the cortex but not in the medulla. We suggest that section staining for MEL-14 fails to locate the mature cells that stain for MEL-14 in suspension; the few MEL-14high cells localized in both the inner and the outer cortex on section staining are predominantly immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes; the majority of thymocytes of mature phenotype, whether MEL-14high or MEL-14low on suspension staining, are of medullary location; the medulla is the most likely immediate source of thymic emigrants.  相似文献   

5.
FOXP3, believed to be the regulatory T (Treg)-cell determining factor, is already expressed at the CD4+CD8+ thymocyte stage, but there is disagreement whether these cells are the precursors of mature CD4+CD8(-) Treg cells. Here, we provide a quantitative analysis of FOXP3 expression in the human thymus. We show that a subset of CD4+CD8+ cells already expressed as much FOXP3 as the FOXP3+ CD4+CD8(-) cells, and like mature Treg cells were CD127 low. In contrast to earlier data, CD8+CD4(-) thymocytes expressed significantly lower levels of FOXP3 than either the CD4+CD8+ or CD4+CD8(-) subsets. The CD4+CD8+ double-positive cells also expressed recombination-activating gene-2, suggesting that they were still immature. Although the FOXP3+ double-positive cells are thus putatively the precursors of the mature CD4+CD8(-)FOXP3+ subset, their frequency did not predict the frequency of more mature Treg cells, and analysis of T-cell antigen receptor repertoire showed clear differences between the two subsets. Although these data do not rule out an independent CD4+CD8+ Treg cell subset, they are consistent with a model of human Treg cell development in which the upregulation of FOXP3 is an early event, but the first FOXP3+ population is still immature and subject to further selection. The upregulation of FOXP3 may thus not be the final determining factor in the commitment of human thymocytes to the Treg cell lineage.  相似文献   

6.
Small human thymocytes (ST) representing 70% of the thymocytes were isolated according to size by centrifugal elutriation. Although these ST contained approximately 30% PNA-cells, they failed to respond to lectins, indicating the existence of a PNA-ST subset that can be considered to belong to the "immature" thymocyte population. The ST were induced to proliferate if, in addition to PHA, IL 1-containing supernatants of highly purified monocyte cultures or 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were present. The incubation of the ST for 90 hr with TPA or IL 1 in the absence of PHA resulted in a strong reduction in the percentage of cells reacting with the immature thymocyte markers TdT and PNA. In addition, the OKT6+ cells were partially reduced after incubation with IL 1. Concomitantly, an increase in the percentage of cells reacting with the mature T cell markers OKT1 and OKT3 was observed, whereas HLA antigens became strongly expressed on all ST. Although IL 1 or TPA were unable to induce proliferation of the ST, these substances induced IL 2 production by these cells. These shifts to cells with more "mature" phenotypes that are able to produce IL 2 were not observed if the ST were incubated with PHA or culture medium only. The responder capacity of the ST to PHA plus TPA was not significantly affected by the depletion of the more "mature" OKT3+ and OKT1+ cells. In addition, in this situation OKT1+, OKT3+, OKT6- cells were found to be generated from OKT1-, OKT3-, OKT6+ cells. Therefore, it could be excluded that the proliferative responses were due to a selective expansion of a preexisting mature T cell population. Our results indicate that TPA mimics IL 1 in the induction of differentiation of the ST to a stage in which subpopulations of these cells are able to produce IL 2 and to respond to PHA. Because only the proliferating ST were found to react with a monoclonal antibody, which is thought to be directed at the IL 2 receptor (anti-Tac), our data suggest that PHA is required for the induction of expression of receptors for IL 2 in those ST subpopulations that are able to proliferate in the presence of IL 2 generated in situ.  相似文献   

7.
The thymus exports a selected subset of virgin T lymphocytes to the peripheral lymphoid organs. The mature phenotype of these thymus emigrants is similar to that of medullary thymocytes and has been cited as supporting a medullary rather than cortical exit site. Using the monoclonal antibody MEL-14, we identify a 1%-3% subpopulation of thymocytes that expresses high levels of a receptor molecule involved in lymphocyte homing to peripheral lymph nodes. We present evidence that these rare MEL-14hi thymocytes are predominantly of mature phenotype and represent the major source of thymus emigrants. Surprisingly, MEL-14hi thymocytes are exclusively cortical in location, although their mature phenotype may allow them to masquerade as medullary cells in conventional studies. We also demonstrate that unlike medullary thymocytes, many cortisone-resistant thymocytes (CRT) are MEL-14hi. Thus, in contrast to current dogma, CRT do not represent a sample of medullary thymocytes as they are found in situ and their level of immunocompetence does not necessarily reflect that of the medullary population. Our findings refute the hypothesis that phenotypically and functionally mature cells are restricted to the medulla, and support our proposition that most thymus emigrants are derived from the MEL-14hi cortical subset.  相似文献   

8.
The activation requirements for thymocyte proliferation were investigated. Thymocytes proliferate in the presence of exogenous interleukin 1, which has been used as the classic assay for this factor. This response, however, is greatly decreased in cultures of purified thymic T cells. Purified thymic T cells will proliferate in the presence of IL 1 if accessory cells are added to culture. The requisite accessory cell is a non-T, adherent, radioresistant cell found in macrophage/dendritic cell-enriched fractions of both thymus and spleen. This cell bears Ia molecules, which are critically involved in the activation of thymocytes. This thymocyte-accessory cell interaction is not dependent on exogenous nominal antigens. Therefore, it appears that IL 1 allows the expansion of thymocytes with specificity for self-class II MHC antigens. This response was found to be unique to this stage of T cell development and can be observed with both mature and immature thymic T cell subsets. The implications of these findings for the physiologic expansion of self-restricted T cells in the thymus are discussed.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infection of the human thymus results in depletion of CD4-bearing thymocytes. This depletion is initially manifested in the immature CD4+/CD8+ thymocyte subset. To determine cellular factors involved in HIV infection in the thymus, we examined the expression of the recently identified viral coreceptor, CXCR4, on fresh human thymocytes and on human cells from SCID-hu (Thy/Liv) mice. CXCR4 is a member of the chemokine receptor family which is required along with CD4 for entry into the cell of syncytium-inducing (SI) HIV-1 strains. Our analyses show that CXCR4 expression is modulated during T-lymphoid differentiation such that immature thymocytes display an increased frequency and higher surface density of the coreceptor than do more mature cells. In addition, using an SI strain of HIV-1 which directs expression of a reporter protein on the surface of infected cells, we have found that the immature CD4+/CD8+ thymocytes that express the highest levels of both CD4 and CXCR4 are the cells that are preferentially infected and depleted by the virus in vitro. Thus, high levels of both primary receptor and coreceptor may allow efficient infection of the thymus by certain HIV-1 strains. This in part may explain the rapid disease progression seen in some HIV-infected children, where the thymus is actively involved in the production of new T lymphocytes.  相似文献   

10.
The NKT cell pool in the thymus contains immature (NK1.1(-)) and mature (NK1.1(+)) subsets that represent distinct linear stages of a linear developmental pathway. An unexplained paradox is why immature NK1.1(-) NKT cells are mainly exported to the periphery instead of the more mature and more abundant NK1.1(+) NKT cells. In this study we have determined that mature NK1.1(+) NKT cells are retained by the thymus to form an extremely long-lived resident population capable of rapid and prolonged production of IFN-gamma and IL-4. The retention of mature NKT cells provides an explanation for why the periphery is mainly seeded by immature NK1.1(-) cells despite mature NK1.1(+) NKT cells being more abundant in the thymus. This is the first study to identify a mature T cell subset retained within the thymus and is additional evidence of the distinct developmental pathways of mainstream T cells and NKT cells.  相似文献   

11.
A population of immature mouse thymocytes bears low levels of surface sialic acid and can be separated from the more mature high sialic acid-bearing thymocytes by selective agglutination with the sialic acid-specific lectin, lobster agglutinin 1. These immature thymocytes do not proliferate in response to concanavalin A (Con A). They do not produce interleukin 2 (IL-2), do not provide T cell help to B cells for an in vitro antibody response, and as shown here, do not become cytotoxic T lymphocytes when polyclonally stimulated with Con A + IL-2. We describe here a spleen-derived maturational factor which stimulates these immature thymocytes, in the presence of Con A and IL-2, to become cytotoxic T lymphocytes. The maturational factor is a protein secreted by Con A-stimulated mouse or rat spleen cells; it is apparently neither interleukin 1, IL-2, interleukin 3, gamma-interferon, nor combinations of these cytokines, because these materials do not replace the maturational factor. The active material in Con A-stimulated mouse spleen cell supernatant was recovered from a G-75 column in the 33,000-48,000 m.w. range. These experiments suggest that within the lobster agglutinin 1-negative thymocyte population there are cells which can mature under the influence of a spleen-derived factor. It is possible that these cells represent the small subpopulation of immature cells destined to become immunocompetent peripheral T cells. On the other hand, the factor may be rescuing cells destined to die in the thymus.  相似文献   

12.
The question of the biologic significance of asialo-GM1 (aGM1) expression by a limited number of cells including natural killer cells has been raised by the recent demonstrations that aGM1 is expressed by activated macrophages and activated T cells as well as the proliferating thymoblast and functionally mature subpopulations of thymus. The current report demonstrates that the expression of aGM1 on aGM1-negative lymphocytes can be induced by stimulation with mitogens under activating conditions. In addition, activation of the aGM1-negative tumor lines EL-4/F and P388D1/B1 under conditions that result in interleukin 2 or interleukin 1 production, respectively, also result in a significant increase in aGM1 expression by the tumor cell lines. Expression of aGM1 therefore appears to be associated with events occurring as a prelude to or during activation of effector function. Since the aGM1-negative cells do display sialylated versions of aGM1 which can be converted by neuraminidase treatment into serologically recognizable aGM1, it is suggested that the expression of aGM1 might reflect a change in the level of glycolipid sialylation rather than a change in membrane lipid composition per se. The small percentage of lymphocytes in normal, nonstimulated spleen and thymus populations which express significant levels of aGM1 were sorted and analyzed for total cellular protein and RNA. Increases in RNA synthesis and in total cellular protein and RNA above basal levels of resting lymphocytes are considered indicators of a G0----G1 transition. The aGM1-positive populations displayed a larger mean population size (as indicated both by higher forward light scatter and by higher total cellular protein content), and a higher mean population RNA content than the aGM1-negative populations. These data are discussed in the context of the hypothesis that the expression of aGM1 may be associated with early events in the activation of resting cells which prepare the cells for subsequent induction of effector function.  相似文献   

13.
The signal requirements for activation and proliferation of CD1+ thymocytes have been studied in order to define whether this immature cell population could function as mature T cells do. We found that CD1+ cells expressed high levels of CD25 antigen upon triggering with specific monoclonal antibodies (mAbs) (anti-CD3, anti-CD2, anti-CD28) in association with low doses of Phorbol-13-myristate-12-acetate (PMA). More interestingly, we described that in the presence of PMA CD1+ thymocytes proliferate upon stimulation with anti-CD28 mAb as well as with a pair of anti-CD2 mAbs, without the need of exogenous interleukin-2 (IL2), whereas they respond to anti-CD3 mAb only if exogenous IL2 was provided. Furthermore, CD1+ cells stimulated under optimal proliferative conditions, gave rise to cell populations capable of lysing natural killer (NK)-sensitive (K562) and NK-resistant (MEL 10, Daudi, EPA1) tumor target cells. These data strongly support the idea that CD1+ thymocytes, under appropriate stimulations, display some of the functional capabilities of mature T cells.  相似文献   

14.
Mice bearing the recessive gene lpr develop an autoimmune syndrome associated with a massive lymphadenopathy, both of which are age and thymus dependent. The predominant accumulating cells in lymphoid tissue of lpr/lpr mice are Thy-1+ but express neither of the mature T cell markers, Lyt-2 or L3T4. We have purified this Lyt-2-/L3T4- subset and examined its phenotype. These cells are not actively cycling, do not express interleukin-2 (IL 2) receptors nor significant levels of antigen receptor, but do express the B cell marker B220. In vitro growth conditions were examined for the lpr Lyt-2-/L3T4- subset. By using a combination of phorbol ester and IL 2, these cells acquired transient expression of IL 2 receptors and grew in an IL 2-dependent manner. Furthermore, these proliferating cells underwent differentiation to a more mature T cell phenotype, with loss of cell surface B220 and acquisition, by a portion, of antigen receptor and Lyt-2. The possible parallels with normal T cell maturation are discussed.  相似文献   

15.
Autoimmune mice homozygous for the lpr/lpr (lpr) gene develop a profound lymphadenopathy resulting from the accumulation of immature Thy-1+ Lyt-2- L3T4- cells in peripheral lymphoid tissues. The source of these cells is not known although the presence of a thymus is necessary to manifest both the lymph node enlargement and the autoimmunity. For this reason and the fact that the abnormal lpr cell phenotypically resembles immature thymocytes, we studied the thymus in lpr mice. Adult lpr thymuses were found to contain an immature population phenotypically identical to the peripherally accumulating cells, including the expression of B220 and Pgp-1 antigens as well as the presence of surface T cell receptor molecules as defined by the antibody KJ16-133. Evidence is presented that some of these lpr precursor T cells are capable of intrathymic differentiation, whereas the vast majority are exported unchanged to the lymph nodes where a portion differentiate further into mature T cells. This lpr-specific lineage could be distinguished from a normal component of the lpr thymus by surface phenotype and immunohistology. The results suggest that the massive accumulation of cells in lpr lymph nodes is not so much the result of abnormal proliferation of T cells as abnormal intrathymic differentiation. In addition, a minor subpopulation of normal Lyt-2- L3T4- thymocytes was identified that resembles the phenotype of the lpr cell and similarly expresses surface T cell receptor molecules. The presence of two parallel lineages in the lpr thymus thus also provides insight into normal T cell development.  相似文献   

16.
We have characterized the thymocytes that can be induced to secrete interleukin 2 (IL 2) after polyclonal stimulation with Con A. For maximal activation, an important adjunct to the Con A is the phorbol ester TPA. In the presence of TPA, IL 2 production by thymocytes is relatively independent of adherent accessory cells; this allows us to compare the abilities of different thymic subpopulations to make IL 2. The most numerous class that includes IL 2 producers is made up of cells with a typical "medullary" population, the phenotype: moderately small, postmitotic cells that fail to bind peanut agglutinin. In addition, however, a population of large, proliferating lymphoblasts is competent in IL 2 production directly as isolated. Relative to the total "medullary" population, the lymphoblasts are enriched for the ability to make IL 2. They account for a significant proportion of the total IL 2 produced by thymocytes, and demonstrate that this aspect of immunocompetence is not restricted to cells that have finished their intrathymic proliferation. The IL 2-producing lymphoblasts do not bind peanut agglutinin or express thymus-leukemia antigen, but they do express high levels of Lyt-1. Although distinct from most medullary thymocytes, therefore, they are also distinct from the majority of cortical blast cells for which a direct precursor role has been established. They may be a subset of the rare proliferating blast cells in the medulla. Further heterogeneity in the thymic IL 2 producers is demonstrated by their expression of the Lyt-2 glycoprotein. The majority of IL 2 producers are Lyt-2- as are the majority of peripheral T "helper" cells. However, a distinct minority of the thymic IL 2 producers express Lyt-2. Therefore, the ability of some peripheral Lyt-2+ cells to secrete IL 2 may be determined at the time of their initial programming in the thymus.  相似文献   

17.
Previous studies have demonstrated that natural killer (NK) cells express the glycolipid asialo GM1, as evidenced by the sensitivity of NK cells to treatment with anti-asialo GM1 serum and complement. Because alloimmune cytotoxic T lymphocytes (CTL) were found to be insensitive to treatment with anti-asialo GM1 serum and complement, it was concluded that asialo GM1 is expressed by NK but not by CTL. However, fluorescence studies indicated that a significant proportion of peripheral T cells did express asialo GM1. Flow cytometric studies were undertaken to determine the extent to which alloimmune CTL express asialo GM1. Affinity-purified, monospecific IgG anti-asialo GM1 antibodies were used to label cells from mixed lymphocyte cultures. Separation of asialo GM1-positive and -negative fractions by cell sorting revealed that the majority of CTL activity resides in the asialo GM1-positive population. When these studies are compared with similar studies of splenic NK activity, it is apparent that, despite the relative insensitivity of CTL to treatment with anti-asialo GM1 and complement, both CTL and NK activity are enriched in the asialo GM1-positive cell population obtained by cell sorting.  相似文献   

18.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

19.
We recently demonstrated the expression of somatostatin (SS) and SS receptor (SSR) subtype 1 (sst1), sst2A, and sst3 in normal human thymic tissue and of sst1 and sst2A on isolated thymic epithelial cells (TEC). We also found an inhibitory effect of SS and octreotide on TEC proliferation. In the present study, we further investigated the presence and function of SSR in freshly purified human thymocytes at various stages of development. Thymocytes represent a heterogeneous population of lymphoid cells displaying different levels of maturation and characterized by specific cell surface markers. In this study, we first demonstrated specific high-affinity 125I-Tyr(11)-labeled SS-14 binding on thymocyte membrane homogenates. Subsequently, by RT-PCR, sst2A and sst3 mRNA expression was detected in the whole thymocyte population. After separation of thymocytes into subpopulations, we found by quantitative RT-PCR that sst2A and sst3 are differentially expressed in intermediate/mature and immature thymocytes. The expression of sst3 mRNA was higher in the intermediate/mature CD3+ fraction compared with the immature CD2+CD3- one, whereas sst2A mRNA was less abundant in the intermediate/mature CD3+ thymocytes. In 7-day-cultured thymocytes, SSR subtype mRNA expression was lost. SS-14 significantly inhibited [3H]thymidine incorporation in all thymocyte cultures, indicating the presence of functional receptors. Conversely, octreotide significantly inhibited [3H]thymidine incorporation only in the cultures of immature CD2+CD3- thymocytes. Subtype sst3 is expressed mainly on the intermediate/mature thymocyte fraction, and most of these cells generally die by apoptosis. Because SS-14, but not octreotide, induced a significant increase in the percentage of apoptotic thymocytes, it might be that sst3 is involved in this process. Moreover, sst3 has recently been demonstrated on peripheral human T lymphocytes, which derive directly from mature thymocytes, and SS analogs may induce apoptosis in these cells. Interestingly, CD14+ thymic cells, which are cells belonging to the monocyte-macrophage lineage, selectively expressed sst2A mRNA. Finally, SSR expression in human thymocytes seems to follow a developmental pathway. The heterogeneous expression of SSR within the human thymus on specific cell subsets and the endogenous production of SS as well as SS-like peptides emphasize their role in the bidirectional interactions between the main cell components of the thymus involved in intrathymic T cell maturation.  相似文献   

20.
Previous studies have indicated that the human thymus is composed of several discrete compartments. Cortical thymocytes are reactive with the monoclonal antibody anti-T6, whereas most medullary cells, unreactive with anti-T6, stain brightly with anti-T3, which defines mature T cell populations. Only a minor thymocyte population lacks both T3 and T6 but expresses T11 antigens. Within the thymus, several proliferating lymphoblasts are present. In addition a distinct subset shows the capacity to proliferate in response to mitogens. By continuous Percoll density gradient centrifugation, we have obtained a cell fraction comprising the vast majority of cells able to proliferate spontaneously or after PHA stimulation. By a panning procedure performed with anti-T3 and anti-T6 antibodies, three phenotypically distinct thymocyte subsets were separated from this fraction, and their functional capabilities were tested. The spontaneous proliferating activity was found to be mainly attributable to thymocytes unable to respond to mitogen, expressing the cortical T6 marker and lacking receptors for IL 2. T3-positive cells are able to respond to mitogen. However, these thymocytes are incapable of producing the adequate amount of IL 2 required to fully saturate their intrinsic proliferative capability. Surprisingly, the phenotypically least mature intrathymic T lymphocytes (T3 and T6 negative) respond to phytomitogen, at least in part, in an interleukin-dependent manner. It is noteworthy that a large proportion of these T3- and T6-negative thymocytes express IL 2 receptors and class II MHC antigens without in vitro activation. These novel findings have potential implications in the context of current models of differentiation pathways within the human thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号